Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển HSG Toán 9 vòng 2 năm 2024 - 2025 trường THCS Cầu Giấy - Hà Nội

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 năm 2022 - 2023 sở GDĐT Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Trị; kỳ thi được diễn ra vào thứ Tư ngày 15 tháng 03 năm 2023. Trích dẫn Đề thi chọn học sinh giỏi Toán 9 năm 2022 – 2023 sở GD&ĐT Quảng Trị : + Cho a, b, c là các số nguyên đôi một khác nhau. Chứng minh rằng trong ba phương trình sau, có ít nhất một phương trình có nghiệm: x² – 2ax + bc + 1 = 0, x² – 2bx + ca + 1 = 0, x² – 2cx + ab + 1 = 0. Cho các số nguyên x, y thỏa mãn 2×2 − y2 = 1. Chứng minh xy(x2 − y2) chia hết cho 40. + Một giải cầu lông có n (n ≥ 2) vận động viên tham gia thi đấu theo thể thức vòng tròn một lượt (hai vận động viên bất kỳ thi đấu với nhau đúng một trận, không có kết quả hòa). Chứng minh rằng tổng các bình phương số trận thắng và tổng các bình phương số trận thua của các vận động viên là bằng nhau. + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), AD là đường cao (D thuộc BC). Gọi E, F lần lượt là hình chiếu của D trên AC và AB. a) Chứng minh tứ giác BCEF nội tiếp. b) Đường tròn đường kính AD cắt (O) tại điểm thứ hai là M (M khác A). Chứng minh MD là phân giác của góc FMC. c) Chứng minh đường thẳng MD, đường trung trực của BC và đường trung trực của EF đồng quy.
Đề thi học sinh giỏi Toán 9 năm 2022 - 2023 sở GDĐT TP Hồ Chí Minh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Ba ngày 14 tháng 03 năm 2023. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2022 – 2023 sở GD&ĐT TP Hồ Chí Minh : + Cho phương trình x3 + mx2 – x + m – m2 = 0 (*) với tham số m. a) Chứng minh rằng phương trình (*) luôn có một nghiệm x = 1 – m với mọi giá trị của tham số m. b) Tìm tất cả các giá trị của tham số m để phương trình (*) có ba nghiệm phân biệt x1, x2, x3 sao cho x1² + x2² + x3² = 3. + Cho tam giác ABC không cân nội tiếp đường tròn (O) có đường cao AD; AM là đường kính của đường tròn (O); K là hình chiếu của B lên AM. Gọi E, F lần lượt là trung điểm các đoạn thẳng BD và CM. a) Chứng minh rằng DK vuông góc AC. b) Chứng minh rằng AEFC là tứ giác nội tiếp. c) Gọi H là trực tâm của tam giác AEC và I là tâm đường tròn ngoại tiếp tứ giác AEFC. Chứng minh rằng HE = 2IO. + Tìm tất cả các số tự nhiên x, y và số nguyên tố p sao cho p^x = y^4 + 64.
Đề thi chọn học sinh giỏi Toán 9 năm 2022 - 2023 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nam Định; kỳ thi được diễn ra vào thứ Sáu ngày 10 tháng 03 năm 2023. Trích dẫn Đề thi chọn học sinh giỏi Toán 9 năm 2022 – 2023 sở GD&ĐT Nam Định : + Cho tam giác nhọn ABC với AB < AC nội tiếp đường tròn(O). Gọi BH và CQ là hai đường cao của tam giác ABC. Tiếp tuyến tại B và tại C của đường tròn (O) cắt nhau tại M. Đoạn thẳng OM cắt BC và cắt đường tròn (O) lần lượt tại N và D. Tia AD cắt BC tại F; AM cắt BC tại E và cắt đường tròn (O) tại điểm thứ hai là K (K khác A). 1) Chứng minh rằng: AB.KC = AC.KB và ABM = AHN. 2) Gọi I là tâm đường tròn ngoại tiếp tam giác AFN. Chứng minh IOM + ADN = 180. 3) Qua E kẻ đường thẳng vuông góc với BC cắt QH tại G. Chứng minh ba điểm A, G, N thẳng hàng. + Lấy 2018 điểm phân biệt ở miền trong của một ngũ giác lồi cùng với 5 đỉnh của ngũ giác đó ta được 2023 điểm phân biệt sao cho không có ba điểm nào thẳng hàng. Biết diện tích của ngũ giác là 1 đơn vị. Chứng minh rằng tồn tại một tam giác có 3 đỉnh lấy từ 2023 điểm đã cho có diện tích không vượt quá 1/4039 đơn vị. + Xét a, b, c là các số thực dương thỏa mãn a + b + c >= 3. Hãy tìm giá trị lớn nhất của biểu thức Q.
Đề thi học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT thành phố Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thành phố Thái Nguyên, tỉnh Thái Nguyên; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài 150 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT thành phố Thái Nguyên : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (m – 2)x + 3 (m khác 2). Tìm tất cả các giá trị của tham số m để đường thẳng (d) cắt Ox tại điểm A, cắt Oy tại điểm B sao cho ABO = 30 độ. + Cho nửa đường tròn tâm O, đường kính AB, điểm M di động trên nửa đường tròn đó (M khác A, M khác B). Gọi điểm H là hình chiếu vuông góc của điểm M trên đường thẳng AB. Vẽ đường tròn đường kính AH, đường tròn đường kính BH. Đường thẳng MA cắt đường tròn đường kính AH tại điểm E (E khác A). Đường thẳng MB cắt đường tròn đường kính BH tại điểm F (F khác B). a. Chứng minh ME.MA = MF.MB. b. Gọi K, G lần lượt là hai điểm đối xứng của điểm H qua các đường thẳng MA, MB. Chứng minh ba điểm M, K, G thẳng hàng. c. Chứng minh MH3 = AB.AE.BF. d. Gọi I, J lần lượt là tâm của đường tròn đường kính AH và BH. Cho AB = 2R. Xác định vị trí của điểm M để diện tích tứ giác IEFJ đạt giá trị lớn nhất. Tính giá trị đó theo R. + Cho số tự nhiên n bất kỳ. Tìm tất cả các số nguyên tố p sao cho số A = 2026n2 + 1014(n + p) luôn viết được dưới dạng hiệu của hai số chính phương.