Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2018 2019 sở GD và ĐT Tiền Giang

Nội dung Đề tuyển sinh môn Toán năm 2018 2019 sở GD và ĐT Tiền Giang Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2018-2019 sở GD và ĐT Tiền Giang Đề tuyển sinh môn Toán năm 2018-2019 sở GD và ĐT Tiền Giang Đề tuyển sinh lớp 10 môn Toán năm 2018-2019 sở GD và ĐT Tiền Giang bao gồm 1 trang với 5 bài toán tự luận. Thí sinh sẽ có thời gian làm bài trong 120 phút. Kỳ thi sẽ diễn ra vào ngày 05/06/2018. Đề thi sẽ có lời giải chi tiết để giúp thí sinh hiểu rõ hơn về cách giải các bài toán. Trích đề tuyển sinh lớp 10 môn Toán năm 2018-2019 sở Tiền Giang: Hai bến sông A và B cách nhau 60 km. Một ca nô đi xuôi dòng từ A đến B rồi ngược dòng từ B về A. Thời gian đi xuôi dòng ít hơn thời gian ngược dòng là 20 phút. Tính vận tốc ngược dòng của ca nô, biết vận tốc xuôi dòng lớn hơn vận tốc ngược dòng của ca nô là 6 km/h. Một hình trụ có diện tích xung quanh bằng 256 cm2 và bán kính đáy bằng 1/2 đường cao. Tính bán kính đáy và thể tích hình trụ. Cho phương trình x^2 - 2x - 5 = 0 có hai nghiệm x1, x2. Không giải phương trình, hãy tính giá trị của các biểu thức: B = x1^2 + x2^2, C = x1^5 + x2^5.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán (Tin) vào lớp 10 năm 2023 - 2024 trường THPT chuyên Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát môn Toán (dành cho thí sinh thi vào chuyên Tin) tuyển sinh vào lớp 10 năm học 2023 – 2024 trường THPT chuyên Thái Nguyên, tỉnh Thái Nguyên. Trích dẫn Đề khảo sát Toán (Tin) vào lớp 10 năm 2023 – 2024 trường THPT chuyên Thái Nguyên : + Cho hai phương trình: x2 − bx + 4c = 0 (1); x2 – b2x – 4bc = 0 (2) (trong đó x là ẩn, b và c là các tham số). Biết phương trình (1) có hai nghiệm x1 và x2, phương trình (2) có hai nghiệm x3 và x4 thỏa mãn điều kiện x3 − x1 = x4 − x2 = 1. Xác định b và c. + Cho tập hợp X chứa đúng 501 số nguyên dương bất kỳ thỏa mãn mỗi số đó nhỏ hơn hoặc bằng 1000. Chứng minh rằng trong X có ít nhất một số chia hết cho một số khác. + Cho tam giác nhọn ABC có ba đường cao AD, BE, CF cắt nhau tại H. Gọi M là trung điểm của đoạn AH. a. Chứng minh tứ giác BDHF nội tiếp đường tròn. b. Chứng minh AF.AB = AH.AD. c. Gọi O là trung điểm của cạnh BC, chứng minh ME vuông góc với EO. d. Gọi I và J tương ứng là tâm đường tròn nội tiếp hai tam giác BDF và EDC. Chứng minh DJI = DEB.
Bộ đề trắc nghiệm ôn thi tuyển sinh vào lớp 10 THPT môn Toán
Tài liệu gồm 177 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tuyển tập 20 đề trắc nghiệm ôn thi tuyển sinh vào lớp 10 THPT môn Toán; các đề được biên soạn theo hình thức trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, không kể thời gian phát đề.
Đề khảo sát Toán (Tin) vào 10 năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán (Tin) ôn thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; đề thi dùng cho thí sinh thi vào lớp 10 chuyên Tin học; kỳ thi được diễn ra vào Chủ Nhật ngày 16 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán (Tin) vào 10 năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Cho ba điểm A B C cố định nằm trên một đường thẳng d (B nằm giữa A và C). Vẽ đường tròn tâm O thay đổi nhưng luôn đi qua B và C (O không thuộc đường thẳng d). Kẻ AM và AN là các tiếp tuyến với đường tròn tâm O (M, N là các tiếp điểm và N thuộc cung nhỏ BC). Đường thẳng AO cắt MN tại điểm H và cắt đường tròn tại các điểm P và Q (P nằm giữa A và Q). Gọi I là trung điểm của BC. + Cho 2023 hình chữ nhật có chiều rộng bằng 1 cm và chiều dài lần lượt bằng 1 x cm 2 x cm 2023 x cm. Biết rằng 1 2 2023 x x là các số nguyên dương khác 1 thỏa mãn điều kiện 1 2 2023 1 1 1 … 88 x. Chứng minh rằng trong 2023 hình chữ nhật này có ít nhất hai hình chữ nhật có diện tích bằng nhau. + Cho hai số thực a b phân biệt thỏa mãn 2 2 a a b b c 2023 2023 với c là một số thực dương. Chứng minh rằng 1 1 2023 0 a b c.
Đề khảo sát Toán (chuyên) vào 10 năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán (chuyên) ôn thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào Chủ Nhật ngày 16 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán (chuyên) vào 10 năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Cho các số thực dương x y thỏa mãn 2 x xy 3 10 và 2 y xy 6. Tính A x y 3. + Cho tam giác ABC nhọn có AB AC nội tiếp đường tròn O. Phân giác trong của BAC cắt BC tại D và cắt O tại Q Q A. Từ D dựng DE DF lần lượt vuông góc với AC AB E AC F AB. Gọi M là trung điểm của BC, tia QM cắt O tại giao điểm thứ hai là P. a) Chứng minh QM QP QD QA. b) Gọi N là giao điểm của PD và EF. Chứng minh MN song song với AD. c) Dựng đường kính AK của O. Các đường tròn ngoại tiếp các tam giác BFN và CEN cắt nhau tại điểm R R N. Chứng minh các điểm P D R thẳng hàng. + Xét một bảng ô vuông cỡ 8 8 gồm 64 ô vuông. Chứng minh với mọi cách đánh dấu 7 ô vuông của bảng, ta luôn tìm được một hình chữ nhật gồm 8 ô vuông mà không có ô nào bị đánh dấu.