Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Mở đầu hình học giải tích không gian Oxyz

Ebook Mở đầu hình học giải tích không gian Oxyz gồm 411 trang, được biên soạn bởi thầy giáo Huỳnh Kim Linh và nhóm tác giả Chinh phục Olympic Toán, mang tới cho bạn đọc cái nhìn khái quát và cơ bản nhất về chủ đề hình học Giải tích không gian Oxyz, thông qua các lý thuyết cơ bản và ví dụ minh họa kèm lời giải chi tiết. Tài liệu giúp các em học sinh lớp 12 học tốt chương trình Hình học 12 chương 3: phương pháp tọa độ trong không gian và ôn thi tốt nghiệp THPT môn Toán. Chương 1 . Mở đầu hình học tọa độ không gian. + Dạng 1. Tìm tọa độ của vectơ, của điểm. + Dạng 2. Tích vô hướng của hai vectơ và ứng dụng. + Dạng 3. Vận dụng công thức trung điểm và trọng tâm. + Dạng 4. Chứng minh hai vectơ cùng phương, không cùng phương. + Dạng 5. Tích có hướng của hai vectơ và ứng dụng. Chương 2 . Lý thuyết về phương trình đường thẳng. + Dạng 1. Viết phương trình đường thẳng đi qua hai điểm phân biệt. + Dạng 2. Đường thẳng Δ đi qua điểm M và song song với đường thẳng d. + Dạng 3. Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với mặt phẳng (α). + Dạng 4. Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với hai đường thẳng d1, d2 không cùng phương. + Dạng 5. Viết phương trình đường thẳng Δ  đi qua điểm M vuông góc với đường thẳng d và song song với mặt phẳng (α). + Dạng 6. Viết phương trình đường thẳng Δ đi qua điểm A và song song với hai mặt phẳng cắt nhau (α), (β). + Dạng 7. Viết phương trình đường thẳng Δ là giao tuyến của hai mặt phẳng (α) và (β). + Dạng 8. Viết phương trình đường thẳng Δ đi qua điểm A và cắt hai đường thẳng d1, d2 không chứa A. + Dạng 9. Viết phương trình đường thẳng Δ nằm trong mặt phẳng (α) và cắt hai đường thẳng d1, d2. + Dạng 10. Viết phương trình đường thẳng Δ đi qua điểm A, vuông góc và cắt d. + Dạng 11. Viết phương trình đường thẳng Δ đi qua điểm A, vuông góc với d1 và cắt d2, với A không thuộc d2. + Dạng 12. Viết phương trình đường thẳng Δ đi qua điểm A, cắt đường thẳng d và song song với mặt phẳng (α). + Dạng 13. Viết phương trình đường thẳng Δ nằm trong mặt phẳng (α) cắt và vuông góc đường thẳng d. + Dạng 14. Viết phương trình đường thẳng Δ đi qua giao điểm A của đường thẳng d và mặt phẳng (α), nằm trong (α) và vuông góc đường thẳng d (d không vuông góc với (α)). + Dạng 15. Viết phương trình đường thẳng Δ là đường vuông góc chung của hai đường thẳng chéo nhau d1, d2. + Dạng 16. Viết phương trình đường thẳng Δ song song với đường thẳng d và cắt cả hai đường thẳng d1, d2. + Dạng 17. Viết phương trình đường thẳng Δ vuông góc với mặt phẳng (α) và cắt cả hai đường thẳng d1, d2. + Dạng 18. Viết phương trình Δ là hình chiếu vuông góc của d lên mặt phẳng (α). + Dạng 19. Viết phương trình Δ là hình chiếu song song của d lên mặt phẳng (α) theo phương d’. [ads] Chương 3 . Các bài toán về phương trình mặt phẳng. + Dạng 1. Viết phương trình mặt phẳng khi biết một điểm và vectơ pháp tuyến của nó. + Dạng 2. Viết phương trình mặt phẳng đi qua một điểm và song song với một mặt phẳng. + Dạng 3. Viết phương trình mặt phẳng đi qua ba điểm không thẳng hàng. + Dạng 4. Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với đường thẳng d. + Dạng 5. Viết phương trình mặt phẳng (α) chứa đường thẳng Δ, vuông góc với mặt phẳng (β). + Dạng 6. Viết phương trình mặt phẳng (α) qua hai điểm A, B và vuông góc với mặt phẳng (β). + Dạng 7. Viết phương trình mặt phẳng (α) chứa đường thẳng Δ và song song với Δ’ (Δ và Δ’ chéo nhau). + Dạng 8. Viết phương trình mặt phẳng (α) chứa đường thẳng Δ và điểm M. + Dạng 9. Viết phương trình mặt phẳng chứa hai đường thẳng cắt nhau. + Dạng 10. Viết phương trình mặt phẳng chứa hai đường thẳng song song. + Dạng 11. Viết phương trình mặt phẳng đi qua một điểm và song song với hai đường thẳng chéo nhau. + Dạng 12. Viết phương trình mặt phẳng đi qua một điểm và vuông góc với hai mặt phẳng cho trước. + Dạng 13. Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) và cách (β) một khoảng k. + Dạng 14. Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) và cách điểm M một khoảng k. + Dạng 15. Viết phương trình mặt phẳng tiếp xúc với mặt cầu. Chương 4 . Các bài toán về phương trình mặt cầu. + Dạng 1. Tìm tâm và bán kính mặt cầu. + Dạng 2. Viết phương trình mặt cầu. + Dạng 3. Sự tương giao và tiếp xúc. Chương 5 . Các bài toán cực trị trong hình học không gian Oxyz. + Dạng 1. Cho hai điểm A, B, mặt phẳng (P) và đường thẳng d. Tìm tọa độ điểm M thuộc (P) sao cho chu vi tam giác MAB nhỏ nhất. Tìm tọa độ điểm M thuộc d sao cho chu vi tam giác MAB nhỏ nhất. + Dạng 2. Cho hai điểm A, B và đường thẳng (d). Tìm trên (d) điểm M để: MA^2 + MB^2 đạt giá trị nhỏ nhất; |MA + MB| đạt giá trị nhỏ nhất; tam giác MAB có diện tích nhỏ nhất. + Dạng 3. Cho điểm A và đường thẳng (d). Viết phương trình mặt phẳng (Q) chứa (d) có d(A;(Q)) lớn nhất, nhỏ nhất. + Dạng 4. Cho hai đường thẳng d và d’. Viết phương trình mặt phẳng (P) chứa d và tạo với đường thẳng d’ một góc lớn nhất. + Dạng 5. Cho hai điểm A, B và đường thẳng d. Viết phương trình đường thẳng Δ đi qua A, cắt d và cách điểm B một khoảng lớn nhất. + Dạng 6. Cho hai điểm A, B và đường thẳng d. Viết phương trình đường thẳng Δ đi qua A, cắt d và cách điểm B một khoảng nhỏ nhất. + Dạng 7. Tìm M sao cho P = a1MA1^2 + . . . + anMAn^2 nhỏ nhất / lớn nhất. + Dạng 8. Cho mặt cầu (S) và mặt phẳng (α). Tìm điểm M trên mặt cầu sao cho khoảng cách từ nó đến mặt cầu đạt giá trị lớn nhất hoặc giá trị nhỏ nhất. + Dạng 9. Cho mặt cầu (S) và đường thẳng (d). Tìm điểm M trên mặt cầu (S) sao cho khoảng cách từ nó đến đường thẳng d đạt giá trị lớn nhất hoặc đạt giá trị nhỏ nhất? Chương 6 . Phương pháp tọa độ hóa hình cổ điển.

Nguồn: toanmath.com

Đọc Sách

Các dạng toán hệ trục tọa độ Oxyz và phương trình mặt cầu thường gặp
Chủ đề hệ trục tọa độ Oxyz và phương trình mặt cầu là chủ đề đầu tiên mà các em học sinh được học khi tìm hiểu chương trình Hình học 12 chương 3, đây là nội dung căn bản mà các em cần nắm vững trước khi tìm hiểu những kiến thức cao hơn. Trong đề thi THPT Quốc gia môn Toán, các câu hỏi và bài tập trắc nghiệm thuộc chủ đề hệ trục tọa độ Oxyz và phương trình mặt cầu được bắt gặp thường xuyên, các bài toán trải rộng ở nhiều mức độ nhận biết, thông hiểu, vận dụng và vận dụng bậc cao. Và để giúp các em có tài liệu tham khảo, rèn luyện, thầy Nguyễn Bảo Vương biên soạn và giới thiệu tài liệu các dạng toán hệ trục tọa độ Oxyz và phương trình mặt cầu thường gặp. Tài liệu gồm 46 trang với các câu hỏi và bài toán trắc nghiệm hệ trục tọa độ Oxyz và phương trình mặt cầu có đáp án và lời giải chi tiết, được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và sở GD&ĐT trên toàn quốc. Mục lục tài liệu các dạng toán hệ trục tọa độ Oxyz và phương trình mặt cầu thường gặp: PHẦN A . CÂU HỎI Dạng toán 1. Tìm tọa độ điểm, véc tơ liên quan đến hệ trục tọa độ Oxyz (Trang 1). Dạng toán 2. Tích vô hướng, tích có hướng và ứng dụng (Trang 8). + Dạng toán 2.1 Tích vô hướng và ứng dụng (Trang 8). + Dạng toán 2.2 Tích có hướng và ứng dụng (Trang 9). Dạng toán 3. Mặt cầu (Trang 10). + Dạng toán 3.1 Xác định tâm, bán kính của mặt cầu (Trang 10). + Dạng toán 3.2 Viết phương trình mặt cầu (Trang 13). + Dạng toán 3.3 Một số bài toán khác (Trang 16). Dạng toán 4. Bài toán cực trị (Trang 17). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng toán 1. Tìm tọa độ điểm, véc tơ liên quan đến hệ trục tọa độ Oxy (Trang 19). Dạng toán 2. Tích vô hướng, tích có hướng và ứng dụng (Trang 27). + Dạng toán 2.1 Tích vô hướng và ứng dụng (Trang 27). + Dạng toán 2.2 Tích có hướng và ứng dụng (Trang 28). Dạng toán 3. Mặt cầu (Trang 31). + Dạng toán 3.1 Xác định tâm, bán kính của mặt cầu (Trang 31). + Dạng toán 3.2 Viết phương trình mặt cầu (Trang 34). + Dạng toán 3.3 Một số bài toán khác (Trang 37). Dạng toán 4. Bài toán cực trị (Trang 42 ).
Phương pháp tọa độ hóa hình không gian
Tài liệu gồm 51 trang hướng dẫn sử dụng phương pháp tọa độ hóa để giải bài toán hình học không gian cổ điển, tài liệu được biên soạn bởi nhóm tác giả Tạp chí và Tư liệu Toán học. Khái quát tài liệu phương pháp tọa độ hóa hình không gian : Đôi khi trong giải toán hình học không gian cổ điển ta sẽ gặp khá nhiều bài toán tính toán phức tạp, tuy nhiên trong phòng thi ta lại không có nhiều thời gian, vì thế trong chương này chúng ta sẽ tìm hiểu một phương pháp giải quyết nhanh các bài toán tính toán phức tạp và khó trong hình không gian cổ điển, liên quan tới cực trị, góc, khoảng cách. I. Ý TƯỞNG . PHƯƠNG PHÁP: Trên mạng có một vài tài liệu nói về phương pháp này và chia thành rất nhiều dạng, điều đó làm chúng ta khi áp dụng có phần khó nhớ và máy móc, tuy nhiên chúng ta chỉ cần nắm được dấu hiệu và phương pháp sau: + Bước 1 . Chọn hệ trục tọa độ. Trong bước này ta sẽ xác định 3 đường vuông góc có trong bài toán và gọi đó là 3 đường cơ sở. Thông thường thì ta sẽ quy ước trục Ox hướng vào mình, trục Oz nằm ngang, còn lại là trục Oy. [ads] + Bước 2 . Xác định tọa độ các điểm liên trên hình liên quan tới bài toán. Với những bạn chưa quen thì chúng ta xác định tọa độ hình chiếu của điểm cần tìm lên các trục, từ đó sẽ suy ra được tọa độ điểm cần tính. + Bước 3 . Áp dụng công thức. Sau đây chúng ta sẽ nhắc lại một số công thức cần nhớ trong phần này: + Diện tích và thể tích: Diện tích tam giác, Thể tích tứ diện, Thể tích hình hộp, Thể tích hình lăng trụ. + Góc: Góc giữa 2 mặt phẳng, Góc giữa 2 đường thẳng, Góc giữa đường thẳng và mặt phẳng. + Khoảng cách:  Khoảng cách từ điểm đến mặt phẳng, Khoảng cách từ một điểm đến 1 đường thẳng, Khoảng cách giữa hai đường thẳng chéo nhau. Chú ý . Thông thường các bài mà không có 3 đường vuông góc thì ta sẽ phải tự dựng thêm để gắn tọa độ và những bài liên quan tới hình lập phương, hình hộp chữ nhật, chối chóp có 3 đường vuông góc, lăng trụ đứng thì khi áp dụng phương pháp này sẽ giải rất nhanh. II. CÁC BÀI TOÁN : Tuyển chọn 59 bài toán hình học không gian cổ điển được giải bằng phương pháp tọa độ hóa.
Tuyển chọn 259 bài toán tọa độ trong không gian
Tài liệu gồm 130 trang tuyển chọn 259 bài toán tọa độ trong không gian giúp học sinh học tốt chủ đề phương pháp tọa độ trong không gian Oxyz thuộc phần Hình học 12 chương 3 và ôn tập hướng đến kỳ thi THPT Quốc gia 2019 môn Toán. Các bài toán phương pháp tọa độ trong không gian Oxyz có trong tài liệu đều được biên soạn ở dạng trắc nghiệm khách quan với 04 lựa chọn và được phân loại theo từng đơn vị bài học: phương pháp tọa độ trong không gian, mặt cầu, phương trình mặt phẳng, phương trình đường thẳng. Tất cả các bài toán phương pháp tọa độ trong không gian Oxyz có trong tài liệu đều có đáp án và lời giải chi tiết. [ads] Trích dẫn tài liệu tuyển chọn 259 bài toán tọa độ trong không gian : + Trong không gian với hệ toạ độ Oxyz, cho A(1;0;0), B(0;1;0), C(0;0;1), D(1;1;1). Trong các mệnh đề sau, mệnh đề nào sai? A. Bốn điểm A, B, C, D không đồng phẳng. B. Tam giác ABD là tam giác đều. C. AB vuông góc với CD. D. Tam giác BCD là tam giác vuông. + Trong không gian với hệ toạ độ Oxyz, cho tứ diện ABCD biết A(0;1;-1), B(1;1;2), C(1;-1;0), D(0;0;1). Viết phương trình mặt phẳng (a) song song với mặt phẳng (BCD) và chia tứ diện thành hai khối AEFG và EFGBCD biết tỷ số thể tích của AEFG và tứ diện bằng 1/27. + Trong không gian với hệ toạ độ Oxyz, cho 3 điểm A(1;3;2), B(1;2;1), C(1;1;3). Viết phương trình đường thẳng Δ đi qua trọng tâm G của tam giác ABC và vuông góc với mặt phẳng (ABC). Một học sinh làm như sau: Bước 1: Toạ độ trọng tâm G của tam giác ABC là: G (1;2;2). Bước 2: Vectơ pháp tuyến của mặt phẳng (ABC) là: n = [AB,AC] = (-3;1;0). Bước 3: Phương trình tham số của đường thẳng Δ: x = 1 – 3t, y = 2 + t, z = 2. Bài giải trên đúng hay sai? Nếu sai thì sai ở bước nào? A. Đúng. B. Sai ở bước 1. C. Sai ở bước 2. D. Sai ở bước 3.
Hình học tọa độ Oxyz (dành cho học sinh Yếu - TB) - Đặng Việt Đông
giới thiệu đến bạn đọc tài liệu chuyên đề hình học tọa độ Oxyz (dành cho học sinh Yếu – TB), tài liệu được biên soạn bởi thầy Đặng Việt Đông gồm 39 trang, tài liệu tóm gọn lý thuyết cơ bản, phương pháp giải toán và tuyển chọn một số bài tập trắc nghiệm phương pháp tọa độ trong không gian Oxyz thuộc chương trình Hình học 12 chương 3, các bài tập ở mức độ nhận biết và thông hiểu, giúp học sinh có học lực yếu – trung bình lấy lại nền tảng kiến thức. Khái quát nội dung tài liệu hình học tọa độ Oxyz (dành cho học sinh Yếu – TB) – Đặng Việt Đông: BÀI 1 : HỆ TRỤC TỌA ĐỘ 1. Các phép toán về toạ độ của vectơ và của điểm. + Sử dụng các công thức về toạ độ của vectơ và của điểm trong không gian. + Sử dụng các phép toán về vectơ trong không gian. 2. Xác định điểm trong không gian. Chứng minh tính chất hình học. Diện tích – Thể tích. + Sử dụng các công thức về toạ độ của vectơ và của điểm trong không gian. + Sử dụng các phép toán về vectơ trong không gian. + Công thức xác định toạ độ của các điểm đặc biệt. + Tính chất hình học của các điểm đặc biệt. BÀI 2 : PHƯƠNG TRÌNH MẶT CẦU Dạng 1: Viết phương trình mặt cầu (S) có tâm I và bán kính R. Dạng 2: Viết phương trình mặt cầu (S) có tâm I và đi qua điểm A. Dạng 3: Viết phương trình mặt cầu (S) nhận đoạn thẳng AB cho trước làm đường kính. Dạng 4: Viết phương trình mặt cầu (S) đi qua bốn điểm A, B, C, D (mặt cầu ngoại tiếp tứ diện). Dạng 5: Viết phương trình mặt cầu (S) đi qua ba điểm A, B, C và có tâm I nằm trên mặt phẳng (P) cho trước. Dạng 6: Viết phương trình mặt cầu (S) có tâm I và tiếp xúc với mặt phẳng (P) cho trước. Dạng 7: Mặt cầu (S) có tâm I và cắt mặt phẳng (P) cho trước theo giao tuyến là một đường tròn thoả điều kiện. [ads] BÀI 3 : PHƯƠNG TRÌNH MẶT PHẲNG Dạng 1: Viết phương trình mặt phẳng (α) đi qua điểm M và có vectơ pháp tuyến n. Dạng 2: Viết phương trình mặt phẳng (α) đi qua điểm M và có cặp vectơ chỉ phương a, b. Dạng 3: Viết phương trình mặt phẳng (α) đi qua điểm M và song song với mặt phẳng (β). Dạng 4: Viết phương trình mặt phẳng (α) đi qua ba điểm A, B, C không thẳng hàng. Dạng 5: Viết phương trình mặt phẳng (α) đi qua một điểm M và một đường thẳng d không chứa M. Dạng 6: Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với đường thẳng d. Dạng 7: Viết phương trình mặt phẳng (α) chưa hai đường thẳng cắt nhau d1 và d2. Dạng 8: Viết phương trình mặt phẳng (α) chứa đường thẳng d1 và song song với đường thẳng d2 (d1 và d2 chéo nhau). Dạng 9: Viết phương trình mặt phẳng (α) đi qua điểm M và song song với hai đường thẳng chéo nhau d1 và d2. Dạng 10: Viết phương trình mặt phẳng (α) chứa một đường thẳng d và vuông góc với mặt phẳng (β). Dạng 11: Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với hai mặt phẳng cắt nhau (β) và (γ). Dạng 12: Viết phương trình mặt phẳng (α) chứa đường thẳng d cho trước và cách điểm M một khoảng k cho trước. Dạng 13: Viết phương trình mặt phẳng (α) tiếp xúc với mặt cầu (S) tại điểm H. BÀI 4 : PHƯƠNG TRÌNH ĐƯỜNG THẲNG Dạng 1: Viết phương trình đường thẳng Δ đi qua điểm M và có vectơ chỉ phương u. Dạng 2: Viết phương trình đường thẳng Δ đi qua hai điểm M, N. Dạng 3: Viết phương trình đường thẳng Δ đi qua điểm M và song song với đường thẳng d cho trước. Dạng 4: Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với mặt phẳng (α) cho trước. Dạng 5: Viết phương trình đường thẳng Δ là giao tuyến của hai mặt phẳng (P), (Q). Dạng 6: Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với hai đường thẳng d1, d2 Dạng 7: Viết phương trình đường thẳng Δ đi qua điểm M, vuông góc và cắt đường thẳng d. Dạng 8: Viết phương trình đường thẳng Δ đi qua điểm M và cắt hai đường thẳng d1, d2. Dạng 9: Viết phương trình đường thẳng Δ nằm trong mặt phẳng (α) và cắt cả hai đường thẳng d1, d2. Dạng 10: Viết phương trình đường thẳng Δ là đường vuông góc chung của hai đường thẳng chéo nhau d1, d2. Dạng 11: Viết phương trình đường thẳng Δ là hình chiếu của đường thẳng d lên mặt phẳng (α).