Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Lục Nam Bắc Giang

Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Lục Nam Bắc Giang Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022-2023 Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022-2023 SYTU xin trình bày đến quý thầy cô và các em học sinh lớp 8 đề khảo sát học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2022-2023 do Phòng Giáo dục và Đào tạo huyện Lục Nam, tỉnh Bắc Giang tổ chức. Đề thi bao gồm 30% câu hỏi trắc nghiệm (20 câu - 6 điểm) và 70% câu hỏi tự luận (4 câu - 14 điểm), thời gian làm bài là 120 phút. Kỳ thi sẽ diễn ra vào ngày 09 tháng 02 năm 2023. Trích dẫn một số câu hỏi từ Đề học sinh giỏi huyện Toán lớp 8 năm 2022-2023 phòng GD&ĐT Lục Nam - Bắc Giang: Cho hai số thực x và y thỏa mãn \(x^2 + y^2 = 6\) và \(xy = 2\). Giá trị của biểu thức \(A = xy + 2022\) bằng bao nhiêu? Tam giác ABC vuông tại A có \(AC = 8\) cm, \(BC = 10\) cm. Tỉ số diện tích của tam giác ABD và tam giác ACD là bao nhiêu? Cho hình vuông ABCD có 2 đường chéo AC và BD cắt nhau tại O. Trên cạnh BC lấy N (\(0 < NC < NB\)), đường thẳng vuông góc với ON tại O cắt AB tại M. Gọi E là giao điểm của AN với DC, gọi K là giao điểm của ON với BE. Hãy chứng minh rằng: \(\Delta MON\) vuông cân, \(MN\) // \(BE\), \(OB/NC = CH/OH = NB/KH\). Qua những câu hỏi này, chúng ta có thể thấy rằng Đề học sinh giỏi huyện Toán lớp 8 năm 2022-2023 phòng GD&ĐT Lục Nam - Bắc Giang mang đến những thách thức và cơ hội cho các em học sinh thể hiện khả năng và kiến thức của mình. Chúc các em học sinh đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Nghĩa Đàn Nghệ An
Nội dung Đề thi Olympic lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Nghĩa Đàn Nghệ An Bản PDF - Nội dung bài viết Đề Thi Olympic Toán Lớp 8 Năm 2021 - 2022 Phòng GD&ĐT Nghĩa Đàn Nghệ An Đề Thi Olympic Toán Lớp 8 Năm 2021 - 2022 Phòng GD&ĐT Nghĩa Đàn Nghệ An Sytu xin chào quý thầy cô và các bạn học sinh lớp 8. Dưới đây là đề thi Olympic môn Toán lớp 8 năm học 2021 - 2022 của phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Hãy cùng chúng tôi tìm hiểu một số câu hỏi trong đề thi này. 1. Cho n là số tự nhiên có hai chữ số. Tìm n biết n + 2 và 2n đều là các số chính phương. 2. Cho hình vuông ABCD. Qua C kẻ đường thẳng d cắt tia AD, tia AB lần lượt tại E, F (AE < AF). Gọi M là giao điểm của DF và BC; N là giao điểm của BE và DC. a) Chứng minh: MC || AB b) Chứng minh MN || EF c) Kẻ AI vuông góc với EF (I EF). Gọi K là giao điểm BE và DF. Chứng minh A, K, I thẳng hàng. 3. Giả sử mỗi điểm trong mặt phẳng được tô bởi một trong hai màu xanh và đỏ. Chứng minh tồn tại một hình chữ nhật có các đỉnh được tô cùng màu. Đây là một số câu hỏi thú vị và thách thức cho các bạn học sinh lớp 8. Chúc các bạn ôn tập tốt và thành công trên đường học tập của mình!
Đề thi học sinh giỏi lớp 8 môn Toán năm 2021 2022 trường THCS Trần Mai Ninh Thanh Hóa
Nội dung Đề thi học sinh giỏi lớp 8 môn Toán năm 2021 2022 trường THCS Trần Mai Ninh Thanh Hóa Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 năm 2021 - 2022 trường THCS Trần Mai Ninh, Thanh Hóa Đề thi học sinh giỏi Toán lớp 8 năm 2021 - 2022 trường THCS Trần Mai Ninh, Thanh Hóa Xin chào quý thầy cô và các em học sinh lớp 8. Hôm nay, Sytu xin giới thiệu đến các bạn đề thi học sinh giỏi môn Toán lớp 8 năm học 2021 - 2022 của trường THCS Trần Mai Ninh, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào ngày 24 tháng 02 năm 2022. Đề thi bao gồm các câu hỏi sau: 1. Cho tam giác ABC nhọn (AB < AC). Các đường cao AE, BF cắt nhau tại H. Gọi M trung điểm của BC, qua H vẽ đường thẳng a vuông góc với HM, a cắt AB, AC lần lượt tại I và K. a) Chứng minh ABC đồng dạng EFC. b) Qua C kẻ đường thẳng b song song với đường thẳng IK, b cắt AH, AB theo thứ tự tại N và D. Chứng minh NC = ND và HI = HK. 2. Cho tam giác PQR cân tại P. Trên cạnh PQ vẽ T sao cho QT = 2PT. Vẽ QG vuông góc với RT. Gọi M là trung điểm của PG. Tính góc PMQ. 3. Cho ba số dương a, b, c với abc = 1. Tìm giá trị lớn nhất của biểu thức M = a + b + c. Hy vọng các em sẽ tự tin và thành công trong kỳ thi sắp tới. Chúc các em học tốt!
Đề thi HSG lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Thanh Thủy Phú Thọ
Nội dung Đề thi HSG lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Thanh Thủy Phú Thọ Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Thanh Thủy - Phú Thọ Đề thi HSG Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Thanh Thủy - Phú Thọ Đề thi HSG Toán lớp 8 năm 2020 - 2021 của phòng GD&ĐT Thanh Thủy - Phú Thọ được biên soạn theo hình thức trắc nghiệm kết hợp với tự luận. Đề bao gồm 16 câu trắc nghiệm (chiếm 08 điểm) và 04 câu tự luận (chiếm 12 điểm), thời gian làm bài là 150 phút. Đề thi cung cấp đáp án cho phần trắc nghiệm và lời giải chi tiết cho phần tự luận. Trích dẫn một số câu hỏi từ đề thi: Một ngày trong năm được gọi là ngày nguyên tố nếu cả số ngày và số tháng đều là số nguyên tố. Hỏi trong năm 2019 có bao nhiêu ngày nguyên tố? Một quả bóng đá được khâu từ 32 miếng da. Suất từng miếng màu ngũ giác đen khâu với 5 miếng màu trắng, và mỗi miếng màu lục giác trắng khâu với 3 miếng màu đen. Số miếng màu trắng là bao nhiêu? Cho tam giác ABC. Đường thẳng xy đi qua A và cắt cạnh BC tại M. Gọi H, K lần lượt là chân đường vuông góc kẻ từ B và C xuống xy. Xác định vị trí đường thẳng xy để tổng BH + CK đạt giá trị lớn nhất. Đề thi này giúp học sinh rèn luyện kỹ năng giải các bài toán toán học, đồng thời phát triển tư duy logic và khả năng suy luận. Qua đó, học sinh có cơ hội nâng cao kiến thức và kỹ năng trong môn Toán, chuẩn bị tốt cho kỳ thi HSG và các kỳ thi quan trọng khác.
Đề thi HSG Olympic lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Quỳnh Lưu Nghệ An
Nội dung Đề thi HSG Olympic lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Quỳnh Lưu Nghệ An Bản PDF Đề thi HSG Olympic Toán lớp 8 năm 2020 – 2021 phòng GD&ĐT Quỳnh Lưu – Nghệ An Đề thi HSG Olympic Toán lớp 8 năm 2020 – 2021 của phòng GD&ĐT Quỳnh Lưu – Nghệ An bao gồm 01 trang với 04 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút. Dưới đây là một số bài toán trích dẫn từ đề thi này: Bài 1: Tìm cặp số nguyên x, y thỏa mãn. Bài 2: Hai bạn Lan và Hoa vào cửa hàng sách. Lan mua một số quyển vở, còn Hoa không những mua gấp đôi số quyển vở của Lan mua mà còn nhiều hơn một quyển nữa. Hãy tính số quyển vở mỗi bạn mua. Biết rằng số quyển vở Lan mua là một số nguyên tố, số quyển vở Hoa mua là lập phương của một số tự nhiên. Bài 3: Một tam giác có độ dài ba cạnh là a, b, c và chu vi là 2. Chứng minh rằng: a2 + b2 + c2 + 2abc < 2. Bạn hãy xem xét và giải quyết các bài toán trên một cách cẩn thận và chính xác để có thể đạt kết quả tốt nhất trong đề thi này.