Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG Toán 9 năm 2023 - 2024 phòng GDĐT Vinh - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An. Trích dẫn Đề chọn đội tuyển thi HSG Toán 9 năm 2023 – 2024 phòng GD&ĐT Vinh – Nghệ An : + Chứng minh rằng không thể tồn tại đa thức P(x) bậc 2 với hệ số nguyên nhận 33 làm nghiệm. + Cho tam giác ABC nhọn (AB < AC), đường tròn tâm I nội tiếp tam giác ABC, tiếp xúc với ba cạnh BC, CA, AB lần lượt tại D, E, F. Đường thẳng EF cắt AI tại J và cắt đường thẳng BC tại S. a) Chứng minh: Tam giác IDA đồng dạng với tam giác IJD. b) Gọi T là giao điểm của ID và EF. Chứng minh: TI.TD = TJ.TS và IS vuông góc với AD. c) Qua E kẻ đường thẳng song song với BC cắt AD, DF tại M, N. Chứng minh M là trung điểm của EN. + Trong mặt phẳng kẻ 2022 đường thẳng phân biệt sao cho không có hai đường thẳng nào song song và không có ba đường thẳng nào đồng quy. Tam giác tạo bởi ba đường thẳng trong số các đường thẳng đã cho tạo thành tam giác đẹp nếu nó không bị đường thẳng nào trong số các đường thẳng còn lại cắt. Chứng minh rằng số tam giác đẹp không ít hơn 674.

Nguồn: toanmath.com

Đọc Sách

Đề HSG lớp 9 môn Toán vòng 1 năm 2022 2023 trường THCS Nguyễn Tri Phương TT Huế
Nội dung Đề HSG lớp 9 môn Toán vòng 1 năm 2022 2023 trường THCS Nguyễn Tri Phương TT Huế Bản PDF - Nội dung bài viết Đề HSG Toán lớp 9 vòng 1 năm 2022-2023 trường THCS Nguyễn Tri Phương TT Huế Đề HSG Toán lớp 9 vòng 1 năm 2022-2023 trường THCS Nguyễn Tri Phương TT Huế Xin chào các thầy cô giáo và các em học sinh lớp 9! Hôm nay Sytu xin giới thiệu đến bạn đề thi chọn học sinh giỏi môn Toán lớp 9 vòng 1 năm học 2022-2023 của trường THCS Nguyễn Tri Phương, tỉnh Thừa Thiên Huế. Trích dẫn một số câu hỏi trong đề thi: Cho bốn số nguyên dương m, n, p, q thỏa điều kiện m^3 = 2p^3, n^3 = 5q^3. Chứng minh rằng tổng m + n + p + q là một hợp số. Cho tam giác ABC có đường phân giác AD. Tính góc BAC biết AB = 4cm, AC = 5cm, BC = 6cm. Cho tam giác A'B'C' có đường phân giác A'D. Chứng minh rằng ABC đồng dạng A'B'C'. Cho đoạn thẳng AB = 4cm, trên cùng một nửa mặt phẳng có bờ AB về hai tia Ax, By vuông góc với AB. Trên Ax lấy điểm D, trên By lấy điểm C sao cho BD vuông góc AC. Gọi E là giao điểm của BD và AC, F và H lần lượt là trung điểm của EB và EC. Biết 8FH = 9AD. Tính CD. Tính giá trị nhỏ nhất của AC + BD. Đề thi năm nay đa dạng và mang tính chất bổ trợ kiến thức học tập của các em học sinh. Chúc các em ôn thi tốt và thành công trong kỳ thi sắp tới!
Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hoàn Kiếm Hà Nội (vòng 1)
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hoàn Kiếm Hà Nội (vòng 1) Bản PDF - Nội dung bài viết Đề Học Sinh Giỏi Lớp 9 Môn Toán Năm 2022-2023 Phòng GD ĐT Hoàn Kiếm Hà Nội (Vòng 1) Đề Học Sinh Giỏi Lớp 9 Môn Toán Năm 2022-2023 Phòng GD ĐT Hoàn Kiếm Hà Nội (Vòng 1) Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh giỏi môn Toán lớp 9 năm học 2022-2023 của phòng Giáo dục và Đào tạo UBND quận Hoàn Kiếm, Hà Nội (vòng 1). Đề thi sẽ diễn ra vào ngày 06 tháng 10 năm 2022. Trích dẫn từ Đề Học Sinh Giỏi Toán lớp 9 năm 2022-2023 của phòng GD&ĐT Hoàn Kiếm, Hà Nội (vòng 1): - Cho hình vuông ABCD, hai đường chéo AC và BD cắt nhau tại O. Lấy E là điểm bất kì thuộc đoạn OD. Trên tia đối của tia EC lấy điểm F sao cho OF = OC. Đường thẳng đi qua F và vuông góc với FO, cắt BD tại S. Kẻ FH vuông góc với BD tại H. 1) Chứng minh BFD = 90° và SD.SB= SH.SO. 2) Chứng minh FC là tia phân giác của góc BFD. 3) Kẻ ET vuông góc với BF tại T. Chứng minh: ST vuông góc với CF. - Tìm các số nguyên tố a, b sao cho a2 + 3ab + b2 là một số chính phương. - Cho 2022 điểm trên mặt phẳng, sao cho khi chọn ba điểm bất kỳ, ta được ba đỉnh của một tam giác có diện tích nhỏ hơn 1. Chứng minh rằng tất cả các điểm này không thể nằm ngoài một tam giác có diện tích nhỏ hơn 4.
Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT thành phố Hải Dương (vòng 2)
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT thành phố Hải Dương (vòng 2) Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm 2022 - 2023 tại Hải Dương Đề thi học sinh giỏi Toán lớp 9 năm 2022 - 2023 tại Hải Dương Sytu xin giới thiệu đến các thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 - 2023 do Phòng Giáo dục và Đào tạo thành phố Hải Dương tổ chức vòng 2. Kỳ thi sẽ diễn ra vào ngày 01 tháng 10 năm 2022, là cơ hội để các em thể hiện kiến thức và khả năng của mình trong môn Toán.
Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT huyện Phúc Thọ Hà Nội
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT huyện Phúc Thọ Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT huyện Phúc Thọ Hà Nội Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT huyện Phúc Thọ Hà Nội Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo huyện Phúc Thọ, thành phố Hà Nội. Đề thi bao gồm 5 bài toán dạng tự luận trên 1 trang, thời gian làm bài là 150 phút (không tính thời gian phát đề). Trích dẫn một số câu hỏi trong đề thi: + Đề cho x, y là hai số dương thoả mãn (x + y)2 >= 6 + 2xy. Hãy tìm giá trị nhỏ nhất của biểu thức Q = x^4 – 2.2 + y^2 + 6/x^2 + 8/y^2. + Cho M = (x^2 + 2yz – 1)(y^2 + 2xz – 1)(1 – z^2 – 2xy), với xy + yz + zx = 1. Chứng minh rằng M là một số hữu tỉ. + Trong tam giác ABC vuông tại A, đường cao AH, I là trung điểm AC, F là hình chiếu của I trên BC. Kẻ tia CE vuông góc AC cắt IF tại E. Hãy tính độ dài AH và AC, chứng minh HA.HI = HB.HE, chứng minh AE vuông góc với BI. Chúc quý thầy cô và các em học sinh đạt kết quả cao trong đề thi học sinh giỏi Toán lớp 9 năm 2022 – 2023. Hy vọng rằng đề thi sẽ giúp các bạn rèn luyện và phát triển khả năng Toán của mình!