Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập VDC lũy thừa và hàm số lũy thừa

Tài liệu gồm 17 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) lũy thừa và hàm số lũy thừa, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC lũy thừa và hàm số lũy thừa: CHỦ ĐỀ 1 . LŨY THỪA. A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Khái niệm lũy thừa. 2. Tính chất của lũy thừa với số mũ thực. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Các phép toán biến đổi lũy thừa. Dạng 2. So sánh, đẳng thức và bất đẳng thức đơn giản. CHỦ ĐỀ 2 . HÀM SỐ LŨY THỪA. A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Khái niệm hàm số lũy thừa. 2. Đạo hàm của hàm số lũy thừa. 3. Khảo sát hàm số lũy thừa. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Tìm tập xác định của hàm số lũy thừa. Dạng 2. Đồ thị hàm số lũy thừa.

Nguồn: toanmath.com

Đọc Sách

Chinh phục điểm 8 9 10 bài tập trắc nghiệm Giải tích
Nội dung Chinh phục điểm 8 9 10 bài tập trắc nghiệm Giải tích Bản PDF - Nội dung bài viết Chinh phục điểm 8 9 10 bài tập trắc nghiệm Giải tích Chinh phục điểm 8 9 10 bài tập trắc nghiệm Giải tích Cuốn sách Chinh phục điểm 8 – 9 – 10 bài tập trắc nghiệm Giải tích có 338 trang được biên soạn bởi các tác giả Mẫn Ngọc Quang, Đỗ Xuân Sỹ, Phạm Minh Tuấn nhằm mục đích giúp các em học sinh luyện tập các dạng toán vận dụng cao thường gặp trong đề thi THPT Quốc gia môn Toán. Nội dung sách được chia thành 8 phần cụ thể để học sinh dễ dàng theo dõi và ôn tập. Phần 1 tập trung vào các nội dung liên quan đến hàm số nâng cao, bao gồm cách giải nhanh, các phương pháp chứng minh, và các bài toán áp dụng. Phần 2 tập trung vào bài toán thực tế và tối ưu kinh doanh để học sinh hiểu rõ ứng dụng của toán học trong cuộc sống. Phần 3 tập trung vào mũ và logarit nâng cao, giúp học sinh nắm vững kiến thức cơ bản và ứng dụng chúng vào các bài toán phức tạp. Phần 4 tập trung vào tích phân ứng dụng và cách sử dụng Casio để tính toán một cách nhanh chóng và chính xác. Phần 5 bàn về biểu thức tổ hợp và nhị thức Newton, phần 6 tập trung vào số phức và các phương pháp tính toán liên quan. Phần 7 tập trung vào xác suất và luyện tập bài toán cao cấp. Phần 8 tập trung vào tính liên tục của hàm số để học sinh có cái nhìn tổng quan về toán học phổ biến và ứng dụng rộng rãi. Tổng thể, cuốn sách này là một tài liệu hữu ích cho học sinh muốn nắm vững và áp dụng kiến thức giải tích vào thực tế, cung cấp đầy đủ các dạng bài tập và phương pháp giải chi tiết, phù hợp cho việc ôn tập và rèn luyện kỹ năng toán học của học sinh.