Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển HSG lớp 12 môn Toán THPT năm 2020 2021 sở GD ĐT Hà Nội

Nội dung Đề chọn đội tuyển HSG lớp 12 môn Toán THPT năm 2020 2021 sở GD ĐT Hà Nội Bản PDF Vừa qua, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi chọn đội tuyển học sinh giỏi cấp thành phố môn Toán lớp 12 THPT năm học 2020 – 2021; kỳ thi diễn ra vào các ngày 19/10/2020 (ngày thi thứ nhất) và 20/10/2020 (ngày thi thứ hai). Trích dẫn đề chọn đội tuyển HSG Toán lớp 12 THPT năm 2020 – 2021 sở GD&ĐT Hà Nội : + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Các đường cao AD, BE và CF của tam giác ABC đồng quy tại điểm H. Đường thẳng EF cắt đường thẳng BC tại điểm S. Qua S kẻ các tiếp tuyến SX, SY tới đường tròn (O), với X, Y là các tiếp điểm. a) Chứng minh D, X và Y là ba điểm thẳng hàng. b) Gọi I là giao điểm của hai đường thẳng XY và EF. Chứng minh đường thẳng IH đi qua trung điểm của đoạn thẳng BC. + Cho tam giác ABC cân tại A (góc BAC < 90°) và M là trung điểm của đoạn thẳng AB. Lấy điểm N thuộc đoạn thẳng CM sao cho CBN = ACM. a) Chứng minh đường tròn ngoại tiếp tam giác BCN tiếp xúc với đường tròn ngoại tiếp tam giác AMN. b) Đoạn thẳng AC cắt đường tròn ngoại tiếp tam giác AMN tại điểm thứ hai P. Gọi I là trung điểm của đoạn thẳng BC. Chứng minh đường thẳng NP đi qua trung điểm của đoạn thẳng MI.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2016 - 2017 sở Bình Thuận
Đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm 2018 - 2019 sở Gia Lai
Đề thi chọn học sinh giỏi môn Toán 12 cấp cơ sở năm học 2018 - 2019 sở Điện Biên
Chinh phục các Đề thi học sinh giỏi môn Toán lớp 12 về cực trị mũ và logarit