Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu bồi dưỡng học sinh giỏi hình học không gian

Tài liệu gồm 103 trang, được sưu tầm và tổng hợp bởi nhóm tác giả Tạp Chí Và Tư Liệu Toán Học, tuyển tập các chuyên đề bồi dưỡng học sinh giỏi hình học không gian. Chương 1 . Phương pháp Vector. I. Cơ sở của phương pháp vector. II. Các bài toán ứng dụng vector. + Bài toán 1. Chứng minh đẳng thức vec tơ. + Bài toán 2. Chứng minh ba vec tơ đồng phẳng và bốn điểm đồng phẳng. + Bài toán 3. Tính độ dài đoạn thẳng. + Bài toán 4. Sử dụng điều kiện đồng phẳng của bốn điểm để giải bài toán hình không gian. + Bài toán 5. Tính góc giữa hai đường thẳng. Chương 2 . Các khối tứ diện đặc biệt. Trong chương trình hình học không gian bậc THPT có lẽ khối đa diện được nhắc tới nhiều nhất và cũng đồng thời được khai thác rất nhiều trong các đề thi thử, HSG, THPT Quốc gia chính là khối tứ diện. Chắc hẳn nhiều bạn đã từng gặp qua các bài toán về tứ diện mà các giả thiết của nó trông rất lạ, hoặc một số bài toán tính thể tích mà trong đó giả thiết liên quan tới góc hoặc tới cạnh chẳng hạn, và chúng ta chưa có cách giải quyết chúng. Vì thế trong chương này tôi sẽ cùng bạn đọc tìm hiểu các bài toán liên quan tới tứ diện từ dễ đến khó để có thể giải quyết hoàn toàn vấn đề này. I. Khối tứ diện tổng quát. + Công thức tính đường trọng tuyến. + Một số công thức về diện tích. + Một số công thức về thể tích của tứ diện. [ads] II. Các khối tứ diện đặc biệt. + Khối tứ diện vuông. + Khối tứ diện gần đều. + Tính chất của tứ diện trực tâm. Chương 3 . Cực trị hình học không gian. Cực trị và bất đẳng thức nói chung luôn là các bài toán khó yêu cầu người làm bài phải có kỹ năng tốt về bất đẳng thức cũng như kiến thức vững về hàm số cũng như đạo hàm. Trong chương này chúng ta sẽ cùng đi tìm hiểu lớp bài toán cực trị hình không gian cũng như bất đẳng thức trong hình không gian. I. Các kiến thức cơ bản về bất đẳng thức. + Bất đẳng thức Cauchy – AM – GM. + Bất đẳng thức Cauchy – Schwarz. + Bất đẳng thức Minkowski. II. Phương pháp giải các bài toán cực trị. + Bước 1. Biểu diễn đối tượng đề bài yêu cầu qua một (hoặc hai) đại lượng chưa biết ta gọi là biến x. + Bước 2. Tìm điều kiện của biến x dựa vào giả thiết đã cho. + Bước 3. Khảo sát hàm số theo biến x để tìm ra kết quả của bài toán.

Nguồn: toanmath.com

Đọc Sách

Nắm trọn chuyên đề nón - trụ - cầu ôn thi THPT Quốc gia môn Toán
Tài liệu gồm 246 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp các dạng bài tập thường gặp về chuyên đề mặt nón – mặt trụ – mặt cầu, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 ôn tập hướng đến kỳ thi tốt nghiệp THPT Quốc gia môn Toán năm học 2023 – 2024. HÌNH HỌC 12 CHƯƠNG 2 . MẶT NÓN – MẶT TRỤ – MẶT CẦU. CHỦ ĐỀ 1 . MẶT NÓN TRÒN XOAY VÀ KHỐI NÓN. + Dạng 1: Tính Sxq và Stp của khối nón. Thể tích khối nón. + Dạng 2: Tính toán các yếu tố liên quan đến khối nón. CHỦ ĐỀ 2 . MẶT TRỤ TRÒN XOAY VÀ KHỐI TRỤ. + Dạng 1: Tính Sxq và Stp của khối trụ. Thể tích khối trụ. + Dạng 4: Khối tròn xoay nội, ngoại tiếp khối đa diện. + Dạng 5: Cực trị khối nón, khối trụ. + Dạng 6: Toán thức tế liên quan đến khối nón, khối trụ. + Dạng 7: Tính diện tích mặt cầu và thể tích khối cầu. + Dạng 8: Khối cầu ngoại tiếp khối đa diện.
Tài liệu chuyên đề mặt nón, mặt trụ, mặt cầu
Tài liệu gồm 302 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề mặt nón, mặt trụ, mặt cầu, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. I. MẶT TRÒN XOAY – NÓN – TRỤ. 1. Lý thuyết. 2. Hệ thống bài tập tự luận. + Dạng 1. Xác định các yếu tố cơ bản (r, l, h) của hình nón. Tính diện tích xung quanh, diện tích toàn phần của hình nón. Tính thể tích khối nón. + Dạng 2. Tính diện tích xung quanh, diện tích toàn phần và thể tích khối trụ. II. MẶT CẦU. 1. Lý thuyết. 2. Hệ thống bài tập tự luận. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Mặt nón, hình nón và khối nón. 3. Mặt trụ, hình trụ và khối trụ. 4. Mặt cầu và khối cầu.
Chuyên đề mặt nón, mặt trụ, mặt cầu - Phạm Hoàng Long
Tài liệu gồm 74 trang, được biên soạn bởi thầy giáo Phạm Hoàng Long, bao gồm lý thuyết trọng tâm, công thức cần nhớ, bài tập trắc nghiệm và bài tập tự luận chuyên đề mặt nón, mặt trụ, mặt cầu; giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 2 và ôn thi tốt nghiệp THPT, tuyển sinh vào Cao đẳng – Đại học. Nón – Trụ – Cầu. 1. Hình nón. 2. Hình trụ. 3. Hình cầu. 4. Hình nón, hình trụ, hình cầu nội tiếp (ngoại tiếp). Bài tập tự luận. Vấn đề 1. Hình nón. Vấn đề 2. Hình trụ. Vấn đề 3. Hình cầu. Vấn đề 4. Khối tròn xoay nội tiếp, ngoại tiếp đa diện. Bài tập trắc nghiệm. Vấn đề 1. Hình nón. Vấn đề 2. Hình trụ. Vấn đề 3. Hình cầu. Vấn đề 4. Khối tròn xoay nội tiếp, ngoại tiếp đa diện.
Chủ đề khối nón - khối trụ - khối cầu ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 133 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề khối nón – khối trụ – khối cầu ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. LÍ THUYẾT. + MẶT NÓN TRÒN XOAY VÀ KHỐI NÓN. 1. Mặt nón tròn xoay. 2. Khối nón. + MẶT TRỤ TRÒN XOAY. 1. Mặt trụ. 2. Hình trụ tròn xoay và khối trụ tròn xoay. + MẶT CẦU VÀ KHỐI CẦU. 1. Mặt cầu. 2. Công thức tính diện tích mặt cầu và thể tích khối cầu. 3. Một số công thức tính đặc biệt về khối tròn xoay. VÍ DỤ MINH HỌA. DẠNG 1 Các yếu tố liên quan đến khối nón, khối trụ. DẠNG 2 Khối tròn xoay nội, ngoại tiếp khối đa diện. DẠNG 3 Bài toán cực trị và toán thực tế. DẠNG 4 Khối cầu ngoại tiếp khối đa diện. DẠNG 5 Khối tròn xoay trong đề thi của Bộ Giáo dục và Đào tạo.