Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm tích phân có đáp án và lời giải

Tài liệu gồm 163 trang tuyển chọn và phân dạng các bài tập trắc nghiệm tích phân có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Giải tích 12 chương 3 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu bài tập trắc nghiệm tích phân có đáp án và lời giải: Vấn đề 1 . Tích phân. Phần 1 . Câu hỏi và bài toán trắc nghiệm. + Dạng toán 1. Tính tích phân bằng cách áp dụng định nghĩa, tính chất và bảng nguyên hàm (Trang 1). + Dạng toán 2. Tích phân hàm phân thức hữu tỉ (Trang 9). + Dạng toán 3. Tích phân hàm chứa dấu căn thức (Trang 14). + Dạng toán 4. Tích phân hàm số lượng giác (Trang 15). + Dạng toán 5. Tích phân hàm số mũ và hàm số logarit (Trang 18). Phần 2 . Lời giải chi tiết. + Dạng toán 1. Tính tích phân bằng cách áp dụng định nghĩa, tính chất và bảng nguyên hàm (Trang 20). + Dạng toán 2. Tích phân hàm phân thức hữu tỉ (Trang 35). + Dạng toán 3. Tích phân hàm chứa dấu căn thức (Trang 48). + Dạng toán 4. Tích phân hàm số lượng giác (Trang 50). + Dạng toán 5. Tích phân hàm số mũ và hàm số logarit (Trang 58). Vấn đề 2 . Tích phân đổi biến số. Phần 1 . Câu hỏi và bài toán trắc nghiệm. + Dạng toán 1. Phương pháp tích phân đổi biến số dạng 1: hàm đa thức, hàm hữu tỉ, hàm vô tỉ, hàm lượng giác, hàm số mũ, hàm số logarit (Trang 62). + Dạng toán 2. Phương pháp tích phân đổi biến số dạng 2: dạng √(a^2 – x^2), dạng √(x^2 – a^2), dạng √(x^2 + a^2), dạng √((a + x)/(a – x)), dạng √((a – x)/(a + x)) (Trang 76). [ads] Phần 2 . Lời giải chi tiết. + Dạng toán 1. Phương pháp tích phân đổi biến số dạng 1: hàm đa thức, hàm hữu tỉ, hàm vô tỉ, hàm lượng giác, hàm số mũ, hàm số logarit (Trang 79). + Dạng toán 2. Phương pháp tích phân đổi biến số dạng 2: dạng √(a^2 – x^2), dạng √(x^2 – a^2), dạng √(x^2 + a^2), dạng √((a + x)/(a – x)), dạng √((a – x)/(a + x)) (Trang 123). Vấn đề 3 . Tích phân từng phần. Phần 1 . Câu hỏi và bài toán trắc nghiệm. + Dạng toán 1. Tích phân P(x).e^x (Trang 131). + Dạng toán 2. Tích phân P(x).sinx hoặc P(x).cosx (Trang 133). + Dạng toán 3. Tích phân P(x).lnx (Trang 134). Phần 2 . Lời giải chi tiết. + Dạng toán 1. Tích phân P(x).e^x (Trang 138). + Dạng toán 2. Tích phân P(x).sinx hoặc P(x).cosx (Trang 148). + Dạng toán 3. Tích phân P(x).lnx (Trang 151).

Nguồn: toanmath.com

Đọc Sách

400 bài tập trắc nghiệm số phức có đáp án và lời giải chi tiết
Tài liệu gồm 122 trang, được biên soạn bởi thầy giáo Hoàng Tuyên và thầy giáo Minh Tâm, tuyển chọn 400 bài tập trắc nghiệm số phức có đáp án và lời giải chi tiết; các câu hỏi và bài tập được phân loại thành 10 dạng toán; tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4 và ôn thi tốt nghiệp THPT môn Toán. + Dạng toán 1. Các phép toán số phức (Trang 3). + Dạng toán 2. Phần thực – phần ảo của số phức (Trang 10). + Dạng toán 3. Số phức liên hợp (Trang 13). + Dạng toán 4. Module số phức (Trang 17). + Dạng toán 5. Phương trình bậc nhất (Trang 22). + Dạng toán 6. Phương trình bậc hai & mối liên hệ giữa hai nghiệm (Trang 28). + Dạng toán 7. Phương trình bậc cao (Trang 44). + Dạng toán 8. Biểu diễn số phức (Trang 52). + Dạng toán 9. Tập hợp điểm biểu diễn số phức (Trang 66). + + Dạng toán 9.1. Tập hợp điểm biểu diễn là đường thẳng (Trang 66). + + Dạng toán 9.2. Tập hợp điểm biểu diễn là đường tròn (Trang 72). + + Dạng toán 9.3. Tập hợp điểm biểu diễn là đường Coníc (Trang 79). + Dạng toán 10. Max – min của module số phức (Trang 83).
Các dạng bài tập VDC số phức
Tài liệu gồm 57 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) số phức, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 4 và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC số phức: CHỦ ĐỀ 1 . KHÁI NIỆM SỐ PHỨC VÀ CÁC PHÉP TOÁN CỦA SỐ PHỨC. Dạng 1: Thực hiện các phép toán của số phức, tìm phần thực phần ảo. Dạng 2. Tìm số phức liên hợp, tính môđun số phức. Dạng 3. Bài toán liên quan đến điểm biểu diễn số phức. Dạng 4. Tìm số phức thỏa mãn điều kiện cho trước. Dạng 5: Bài toán tập hợp điểm biểu diễn số phức. CHỦ ĐỀ 2 . PHƯƠNG TRÌNH BẬC HAI TRÊN TẬP SỐ PHỨC. Dạng 1: Giải phương trình. Tính toán biểu thức nghiệm. Dạng 2: Định lí Vi-ét và ứng dụng. Dạng 3: Phương trình quy về phương trình bậc hai. CHỦ ĐỀ 3 . CỰC TRỊ SỐ PHỨC. Dạng 1: Phương pháp hình học. Dạng 2: Phương pháp đại số.
Các dạng bài tập VDC cực trị số phức
Tài liệu gồm 15 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) cực trị số phức, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 4 (số phức) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC cực trị số phức: A. LÍ THUYẾT TRỌNG TÂM 1. Các bất đẳng thức thường dùng. 2. Một số kết quả đã biết. B. CÁC DẠNG BÀI TẬP Dạng 1 : Phương pháp hình học. 1. Phương pháp giải. + Bước 1: Chuyển đổi ngôn ngữ bài toán số phức sang ngôn ngữ hình học. + Bước 2: Sử dụng một số kết quả đã biết để giải bài toán hình học. + Bước 3: Kết luận cho bài toán số phức. 2. Bài tập mẫu. Dạng 2 : Phương pháp đại số. 1. Phương pháp giải. 2. Bất đẳng thức Cauchy – Schwarz. 3. Bài tập mẫu.
Các dạng bài tập VDC phương trình bậc hai trên tập số phức
Tài liệu gồm 10 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) phương trình bậc hai trên tập số phức, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 4 (số phức) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC phương trình bậc hai trên tập số phức: A. LÍ THUYẾT 1. Căn bậc hai của một phức. 2. Giải phương trình bậc hai với hệ số thực. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1: Giải phương trình. Tính toán biểu thức nghiệm. Dạng 2: Định lí Vi-ét và ứng dụng. Dạng 3: Phương trình quy về phương trình bậc hai.