Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 10 năm 2022 - 2023 trường THPT Phù Cừ - Hưng Yên

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng môn Toán 10 năm học 2022 – 2023 trường THPT Phù Cừ, tỉnh Hưng Yên; đề thi được biên soạn theo hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút; đề thi có đáp án mã đề 101 102 103 104. Trích dẫn Đề khảo sát Toán 10 năm 2022 – 2023 trường THPT Phù Cừ – Hưng Yên : + Trong lớp 10A có 26 học sinh thích chơi cờ vua, 25 học sinh thích chơi cầu lông và 21 học sinh thích chơi bóng đá. Biết rằng có 17 học sinh vừa thích chơi cờ vua và vừa thích chơi cầu lông; 13 học sinh vừa thích chơi cầu lông và vừa thích chơi bóng đá; 19 học sinh vừa thích chơi cờ vua và vừa thích chơi bóng đá, trong đó có đúng 16 học sinh chỉ thích chơi 2 môn thể thao. Hỏi lớp 10A có bao nhiêu học sinh thích chơi cả ba môn thể thao? + Một trang trại cân thuê xe vận chuyển 450 con lợn và 35 tấn cám. Nơi cho thuê xe chỉ có 12 xe lớn và 10 xe nhỏ. Một chiếc xe lớn có thể chở 50 con lợn và 5 tấn cám. Một chiếc xe nhỏ có thể chở 30 con lợn và 1 tấn cám. Tiền thuê một xe lớn là 4 triệu đồng, một xe nhỏ là 2 triệu đồng. Biết phải thuê a xe loại lớn và b xe loại nhỏ thì chi phí thuê xe là thấp nhất bằng F triệu đồng. Tính giá trị biểu thức P F ab 2022. + Mệnh đề nào sau đây đúng? A. Nếu số tự nhiên chia hết cho 6 thì số đó có chữ số tận cùng là 2 và 3. B. Nếu số tự nhiên chia hết cho 5 thì số đó có chữ số tận cùng là 0 hoặc 5. C. Nếu số tự nhiên chia hết cho 3 thì số đó có chữ số tận cùng là 3, 6, 9. D. Nếu số tự nhiên chia hết cho 2 thì số đó có chữ số tận cùng là 0, 2, 4, 8.

Nguồn: toanmath.com

Đọc Sách

Đề ôn tập trắc nghiệm môn Toán lớp 10 trường THPT chuyên Lương Thế Vinh - Đồng Nai
Đề ôn tập trắc nghiệm môn Toán lớp 10 trường THPT chuyên Lương Thế Vinh – Đồng Nai gồm 4 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm. Nội dung đề gồm 2 chương: + Mệnh đề và tập hợp + Hàm số bậc nhất và hàm số bậc hai Trong đề có một số câu hỏi bằng Tiếng Anh được trích dẫn từ các đề thi quốc tế, đề ôn tập có đáp án . Trích dẫn đề thi : + Xét hai hàm số: f(x) = x^2 + 2bx + 1 và g(x) = 2a(x + b), ở đây x là biến số và các hằng số a và b là các số thực. Với mỗi cặp hằng số a và b có thể được xem như là một điểm (a,b) trong mặt phẳng toạ độ Oab. Gọi S là tập hợp các điểm (a,b) sao cho đồ thị của các hàm số y = f(x) và y = g(x) không có điểm chung (trong mặt phẳng toạ độ Oxy). Diện tích của S bằng (hoặc gần bằng): [ads] A. 1 B. 4 C. 4π D. π + Cho parabol y = ax^2 + bx + c có đỉnh tại (4,−5) và cắt trục hoành tại hai điểm có hoành độ trái dấu. Trong các số a, b, c, số nào dương? A Chỉ b B Chỉ a C Chỉ c D Chỉ a và b + Biết rằng đồ thị hàm số y = ax^2 + bx + c cắt trục hoành tại hai điểm phân biệt A(x1;0), B(x2;0) (x1, x2 > 0) sao cho OA = AB. Hệ thức liên hệ giữa a, b, c là? A. 2b^2 = 9ac B. b^2 = 9ac C. b = 9ac D. b^2 = 9(a+ c)
Đề kiểm tra chất lượng lần 1 môn Toán 10 trường THPT Quảng Xương 4 - Thanh Hóa
Đề kiểm tra chất lượng lần 1 môn Toán 10 trường THPT Quảng Xương 4 – Thanh Hóa gồm 50 câu hỏi trắc nghiệm, có đáp án. Trích dẫn đề thi : + Người ta làm một chiếc cổng hình parabol dạng y = -1/2x^2 có chiều rộng d=8m. Khi đó chiều cao h của cổng là? A. h = 8m B. h = 10m C. h = 7m D. h = 9m + Cho hàm số y = x^2 – 2x + 3. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hàm số đồng biến trên khoảng (2; +∞) B. Hàm số nghịch biến trên khoảng(-∞; 2) C. Đồ thị của hàm số có đỉnh I(1; 0) D. Hàm số đồng biến trên khoảng (0; +∞) [ads] + Trong một khoảng thời gian nhất định, tại một địa phương đài khí tượng thủy văn đã thống kê được: + Số ngày mưa: 10 ngày + Số ngày có gió: 8 ngày + Số ngày lạnh: 6 ngày + Số ngày mưa và gió: 5 ngày + Số ngày mưa và lạnh: 4 ngày + Số ngày lạnh và có gió: 3 ngày + Số ngày mưa lạnh và có gió: 1 ngày Vậy có bao nhiêu ngày có thời tiết xấu (có gió, mưa hoặc lạnh)?
Đề khảo sát chất lượng Toán 10 năm học 2017 - 2018 trường THPT Hậu Lộc 4 - Thanh Hóa lần 1
Đề khảo sát chất lượng lần 1 năm học 2017 – 2018 môn Toán khối 10 trường THPT Hậu Lộc 4, tỉnh Thanh Hóa gồm 4 câu hỏi tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi : + Cho hình vuông ABCD trên cạnh BC lấy điểm E. Dựng tia Ax vuông góc với AE, Ax cắt cạnh CD kéo dài tại F, kẻ trung tuyến AI của AEF, AI kéo dài cắt CD tại K. Qua E vẽ đường thẳng song song với AB cắt AI tại G. a. Chứng minh rằng tứ giác AECF nội tiếp b. Chứng minh rằng vtAB + vtEK + vtFA = vtEB + vtFK [ads] c. Chứng minh rằng vtFG = vtKE + Chứng minh rằng với mọi số thực dương a, b, c thì trong ba phương trình sau, ít nhất một phương trình có nghiệm: x^2 – 2√a.x + √bc = 0 x^2 – 2√b.x + √ac = 0 x^2 – 2√c.x + √ab = 0
Đề thi khảo sát chất lượng Toán 10 năm học 2016 - 2017 trường THPT Thạch Thành 1 - Thanh Hóa lần 4
Đề thi khảo sát chất lượng Toán 10 năm học 2016 – 2017 trường THPT Thạch Thành 1 – Thanh Hóa lần 4 gồm 7 bài tập tự luận, có hướng dẫn giải và thang điểm. Trích một số bài toán trong đề: + Cho hàm số: y = x^2 – 4x + c a) Tìm c biết rằng đồ thị của hàm số là một Parabol đi qua điểm A(2;-1) b) Vẽ đồ thị của hàm số ứng với giá trị c tìm được + Cho tam giác đều ABC cạnh a (a > 0). MNPQ là hình chữ nhật nội tiếp tam giác ABC (như hình vẽ). Tính diện tích lớn nhất có thể đạt được của hình chữ nhật MNPQ theo a. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có phương trình đường thẳng chứa đường cao kẻ từ B là: x + 3y – 18 = 0, phương trình đường trung trực của đoạn BC là: 3x + 19y – 279 = 0, đỉnh C thuộc đường thẳng d: 2x – y + 5 = 0. Tìm tọa độ điểm A biết rằng góc BAC = 135 độ.