Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nguyên hàm - tích phân và ứng dụng - Bùi Trần Duy Tuấn

giới thiệu đến quý thầy, cô giáo và các em học sinh chuyên đề nguyên hàm – tích phân và ứng dụng do thầy Bùi Trần Duy Tuấn biên soạn, tài liệu gồm 321 trang tổng hợp kiến thức cơ bản cần nắm, phân dạng, hướng dẫn cách giải toán và tuyển chọn các ví dụ, bài tập có lời giải chi tiết. Chủ đề 1 . Nguyên hàm I. Tìm nguyên hàm bằng định nghĩa, tính chất và phương pháp phân tích 1. Tìm nguyên hàm các đa thức, lũy thừa, mũ, các hàm chứa căn 2. Tìm nguyên hàm của hàm hữu tỉ 3. Tìm nguyên hàm của hàm lượng giác II. Tìm nguyên hàm bằng phương pháp đổi biến số 1. Phương pháp đổi biến số dạng 1 2. Phương pháp đổi biến số dạng 2 III. Tìm nguyên hàm bằng phương pháp từng phần 1. Kỹ thuật chọn hệ số 2. Kỹ thuật tích phân từng phần bằng phương pháp đường chéo IV. Tìm nguyên hàm bằng tổng hợp các phương pháp Chủ đề 2 : Tích phân I. Phương pháp phân tích, dùng vi phân và sử dụng tính chất của tích phân II. Phương pháp đổi biến 1. Phương pháp đổi biến số dạng 1 2. Phương pháp đổi biến số dạng 2 3. Phương pháp đổi biến cho một số hàm đặc biệt III. Phương pháp từng phần [ads] Chủ đề 3 . Ứng dụng của tích phân I. Ứng dụng tích phân để tính diện tích hình phẳng 1. Một số bài toán về tính diện tích giới hạn bởi các đường cho trước 2. Một số bài toán về ứng dụng tích phân tính diện tích trong thực tế II. Tính thể tích vật thể và thể tích khối tròn xoay 1. Tính thể tích vật thể 2. Tính thể tích khối tròn xoay III. Ứng dụng của tích phân trong các lĩnh vực khác Xem thêm :  + Chuyên đề hàm số – Bùi Trần Duy Tuấn + Chuyên đề lũy thừa, mũ và logarit – Bùi Trần Duy Tuấn + Chuyên đề số phức – Bùi Trần Duy Tuấn + Chuyên đề phương pháp tọa độ trong không gian – Bùi Trần Duy Tuấn Ngoài ra, bạn đọc có thể xem thêm các chuyên đề khác do thầy Bùi Trần Duy Tuấn biên soạn tại địa chỉ: toanhocplus.blogspot.com.

Nguồn: toanmath.com

Đọc Sách

Nguyên hàm và các phương pháp tìm nguyên hàm - Trần Văn Tài
Tài liệu nguyên hàm và các phương pháp tìm nguyên hàm được biên soạn bởi thầy Trần Văn Tài gồm 70 trang tóm tắt các lý thuyết và tính chất của nguyên hàm, phân dạng toán, hướng dẫn phương pháp tìm nguyên hàm và tuyển chọn các bài tập trắc nghiệm nguyên hàm có đáp án giúp học sinh học tốt nội dung kiến thức nguyên hàm, tích phân và ứng dụng (Giải tích 12 chương 3). Khái quát nội dung tài liệu nguyên hàm và các phương pháp tìm nguyên hàm – Trần Văn Tài: A. Khái niệm nguyên hàm và tính chất của nguyên hàm . + Trình bày khái niệm và tính chất của nguyên hàm. + Bảng nguyên hàm một số hàm số thường gặp (với C là hằng số tùy ý). + Một số lưu ý cần nắm: 1. Cần nắm vững bảng nguyên hàm. 2. Nguyên hàm của một tích (thương) của nhiều hàm hàm số không bao giờ bằng tích (thương) của các nguyên hàm của những hàm thành phần. 3. Muốn tìm nguyên hàm của một hàm số, ta phải biến đổi hàm số này thành một tổng hoặc hiệu của những hàm số tìm được nguyên hàm (dựa vào bảng nguyên hàm). B. Các dạng toán nguyên hàm thường gặp và phương pháp tìm nguyên hàm . Dạng toán 1 . TÍNH NGUYÊN HÀM BẰNG BẢNG NGUYÊN HÀM 1. Tích của đa thức hoặc lũy thừa → khai triển. 2. Tích các hàm mũ → khai triển theo công thức mũ. 3. Chứa căn → chuyển về lũy thừa. 4. Tích lượng giác bậc một của sin và cosin → khai triển theo công thức tích thành tổng. 5. Bậc chẵn của sin và cosin → hạ bậc. [ads] Dạng toán 2 . TÍNH NGUYÊN HÀM CỦA HÀM SỐ HỮU TỶ 1. Nếu bậc của tử số P(x) ≥ bậc của mẫu số Q(x) → Chia đa thức. 2. Nếu bậc của tử số P(x) < bậc của mẫu số Q(x) → Xem xét mẫu số và khi đó: + Nếu mẫu số phân tích được thành tích số, ta sẽ sử dụng đồng nhất thức để đưa về dạng tổng của các phân số. + Nếu mẫu số không phân tích được thành tích số (biến đổi và đưa về dạng lượng giác). Dạng toán 3 . TÍNH NGUYÊN HÀM BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ 1. Đổi biến số dạng 1: t = φ(x). 2. Đổi biến số dạng 2: x = φ(t). Dạng toán 4 . TÍNH NGUYÊN HÀM BẰNG PHƯƠNG PHÁP NGUYÊN HÀM TỪNG PHẦN + Nhận dạng: Tích 2 hàm khác loại nhân với nhau. + Thứ tự ưu tiên chọn u: log – đa – lượng – mũ và dv = phần còn lại. Nghĩa là nếu có In hay log thì chọn u = ln hay u = log và dv = còn lại. Nếu không có ln, log thì chọn u = đa thức và dv = còn lại. Nếu không có log, đa thức, ta chọn u = lượng giác … + Lưu ý rằng bậc của đa thức và bậc của In tương ứng với số lần lấy nguyên hàm. + Dạng mũ nhân lượng giác là dạng nguyên hàm từng phần luân hồi.
Các phương pháp xác định nguyên hàm - Lê Bá Bảo
Tài liệu gồm 41 trang hướng dẫn các phương pháp tìm nguyên hàm của hàm số với các ví dụ minh họa và bài tập trắc nghiệm tự luyện. I – Tổng quan lý thuyết 1. Nguyên hàm 2. Tính chất của nguyên hàm 3. Sự tồn tại của nguyên hàm 4. Bảng nguyên hàm của một số hàm số sơ cấp II – Phương pháp tính nguyên hàm [ads] III – Bài tập tự luận minh họa + Một số phép biến đổi cơ bản + Nguyên hàm các hàm số phân thức + Nguyên hàm từng phần + Đổi biến + Dùng vi phân IV – Bài tập trắc nghiệm minh họa V – Bài tập trắc nghiệm tự luyện
109 bài toán trắc nghiệm nguyên hàm - Trần Công Diêu
Tài liệu gồm 24 trang với 109 bài tập trắc nghiệm nguyên hàm do thầy Trần Công Diêu sưu tầm và biên soạn. Trích dẫn tài liệu : + Mệnh dề nào sau đây sai? A. Nếu F(x) là một nguyên hàm của f(x) trên (a; b) và C là hằng số thì ∫f(x) = F(x) + C B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b) C. F(x) là một nguyên hàm của f(x) trên (a; b) ⇔ F'(x) = f(x) ∀x ∈ (a; b) D. (∫f(x)dx)’ = f(x) + Xét hai khẳng định sau: (I) Mọi hàm số f(x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó (II) Mọi hàm số f(x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó [ads] Trong hai khẳng định trên: A. Chỉ có (I) đúng B. Chỉ có (II) đúng C. Cả hai đều đúng D. Cả hai đều sai + Hàm số f(x) có nguyên hàm trên K nếu: A. f(x) xác định trên K B. f(x) có giá trị lớn nhất trên K C. f(x) có giá trị nhỏ nhất trên K D. f(x) liên tục trên K
Chuyên đề các phương pháp tính tích phân - Nguyễn Duy Khôi
Ngày nay phép tính vi tích phân chiếm một vị trí hết sức quan trọng trong Toán học, tích phân được ứng dụng rộng rãi như để tính diện tích hình phẳng, thể tích khối tròn xoay, nó còn là đối tượng nghiên cứu của giải tích, là nền tảng cho lý thuyết hàm, lý thuyết phương trình vi phân, phương trình đạo hàm riêng… Ngoài ra phép tính tích phân còn được ứng dụng rộng rãi trong Xác suất, Thống kê, Vật lý, Cơ học, Thiên văn học, Y học … Phép tính tích phân được bắt đầu giới thiệu cho các em học sinh ở lớp 12, tiếp theo được phổ biến trong tất cả các trường đại học cho khối sinh viên năm thứ nhất và năm thứ hai trong chương trình học đại cương. Hơn nữa trong các kỳ thi Tốt nghiệp THPT và kỳ thi Tuyển sinh đại học phép tính tích phân hầu như luôn có trong các đề thi môn Toán của khối A, khối B và cả khối D. Bên cạnh đó, phép tính tích phân cũng là một trong những nội dung để thi tuyển sinh đầu vào hệ Thạc sĩ và nghiên cứu sinh. [ads] Với tầm quan trọng của phép tính tích phân, chính vì thế mà tôi viết một số kinh nghiệm giảng dạy tính tích phân của khối 12 với chuyên đề “TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP PHÂN TÍCH – ĐỔI BIẾN SỐ VÀ TỪNG PHẦN” để phần nào củng cố, nâng cao cho các em học sinh khối 12 để các em đạt kết quả cao trong kỳ thi Tốt nghiệp THPT và kỳ thi Tuyển sinh đại học và giúp cho các em có nền tảng trong những năm học đại cương của đại học. Trong phần nội dung chuyên đề dưới đây, tôi xin được nêu ra một số bài tập minh họa cơ bản tính tích phân chủ yếu áp dụng phương pháp phân tích, phương pháp đổi biến số, phương pháp tích phân từng phần. Các bài tập đề nghị là các đề thi Tốt nghiệp THPT và đề thi tuyển sinh đại học Cao đẳng của các năm để các em học sinh rèn luyện kỹ năng tính tích phân và phần cuối của chuyên đề là một số câu hỏi trắc nghiệm tích phân. Tuy nhiên với kinh nghiệm còn hạn chế nên dù có nhiều cố gắng nhưng khi trình bày chuyên đề này sẽ không tránh khỏi những thiếu sót, rất mong được sự góp ý chân tình của quý Thầy Cô trong Hội đồng bộ môn Toán Sở Giáo dục và đào tạo tỉnh Đồng Nai. Nhân dịp này tôi xin cảm ơn Ban lãnh đạo nhà trường tạo điều kiện tốt cho tôi và cảm ơn quý thầy cô trong tổ Toán trường Nam Hà, các đồng nghiệp, bạn bè đã đóng góp ý kiến cho tôi hoàn thành chuyên đề này. Tôi xin chân thành cám ơn.