Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử HSG lần 2 lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Hiệp Hòa Bắc Giang

Nội dung Đề thi thử HSG lần 2 lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Hiệp Hòa Bắc Giang Bản PDF - Nội dung bài viết Đề thi thử HSG lần 2 lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Hiệp Hòa Bắc Giang Đề thi thử HSG lần 2 lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Hiệp Hòa Bắc Giang Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 7 Đề thi thử học sinh giỏi cấp huyện lần 2 môn Toán lớp 7 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo UBND huyện Hiệp Hòa, tỉnh Bắc Giang. Đề thi bao gồm các câu hỏi có đáp án và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi trong đề thi: Cho tam giác ABC có M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm E sao cho ME MA. a) Chứng minh AC BE. b) Gọi I là một điểm trên đoạn thẳng AC, K là một điểm trên đoạn thẳng EB sao cho AI EK. Chứng minh ba điểm I, M, K thẳng hàng. Cho tam giác ABC cân tại A có ∠BAC = 20°. Vẽ tam giác đều BCD sao cho điểm D nằm trong tam giác ABC. Tia phân giác của ∠ABD cắt AC tại M. Chứng minh AM BC. Tìm số nguyên a để 2^a * a^3 chia hết cho a + 1. Tìm các số nguyên tố x, y thỏa mãn 2^(2x) * y^2 = 2^(x+1). Để tải file Word dành cho quý thầy cô, vui lòng truy cập vào đường link sau: [link download].

Nguồn: sytu.vn

Đọc Sách

Đề HSG cấp huyện Toán 7 năm 2022 - 2023 phòng GDĐT Lập Thạch - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc; đề thi hình thức tự luận với 09 bài toán, thời gian làm bài 120 phút. Trích dẫn Đề HSG cấp huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Lập Thạch – Vĩnh Phúc : + Tìm các số nguyên tố p sao cho 2^p + p^2 là một số nguyên tố. + Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm BC, D là điểm thuộc đoạn BM (D khác B và M). Kẻ các đường thẳng BH, CI lần lượt vuông góc với đường thẳng AD tại H và I. Chứng minh rằng: a) BAM = ACM và BH = AI. b) Tam giác MHI vuông cân. + Cho tam giác ABC cân tại A, có A = 100° và I là giao điểm các đường phân giác trong của tam giác ABC. Trên tia BA lấy điểm D sao cho BD = BC. Đường thẳng BI cắt AC tại E, DE cắt BC tại F. Chứng minh rằng: FB = FD.
Đề KSNL Toán 7 năm 2022 - 2023 phòng GDĐT Thái Thụy - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát năng lực học sinh môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thái Thụy, tỉnh Thái Bình. Trích dẫn Đề KSNL Toán 7 năm 2022 – 2023 phòng GD&ĐT Thái Thụy – Thái Bình : + Trong kì khảo sát năng lực học sinh môn Toán của huyện A, ba khối 6, 7, 8 có tất cả 458 học sinh đăng kí tham gia. Khi khảo sát, khối 6 giảm đi 5 học sinh, khối 7 giữ nguyên, khối 8 giảm đi 3 học sinh nên số học sinh tham gia khảo sát của khối 6, 7, 8 lần lượt tỉ lệ với 6; 5; 4. Tính số học sinh mỗi khối đăng kí tham gia khảo sát. + Cho biểu thức E với a là số nguyên. Tìm giá trị nguyên nhỏ nhất của E. + Cho tam giác ABC vuông tại A và AB = AC. Tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh AB lấy điểm E sao cho AE = AD. Từ A kẻ đường thẳng vuông góc với BD tại K và cắt cạnh BC ở H. Từ E kẻ đường thẳng vuông góc với BD tại I và cắt cạnh BC ở G. Đường thẳng EG cắt đường thẳng AC tại Q. 1. Chứng minh AEQ = ADB và ABD = AQE. 2. Chứng minh A là trung điểm của QC và tam giác QBC vuông cân. 3. Chứng minh DH vuông góc với BC. 4. Chứng minh GB = GD.
Đề học sinh giỏi lần 2 Toán 7 năm 2022 - 2023 phòng GDĐT Thủ Đức - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi lần thứ 2 môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Thủ Đức, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi lần 2 Toán 7 năm 2022 – 2023 phòng GD&ĐT Thủ Đức – TP HCM : + Một khối gỗ hình lăng trụ đứng tứ giác có đáy là hình chữ nhật có kích thước là 6dm, 5dm và chiều cao 7dm. Người ta khoét từ đáy một cái lỗ hình lăng trụ đứng tam giác, đáy là một tam giác vuông có 2 cạnh góc vuông là 3dm và 4 dm và cạnh huyền là 5 dm. a) Tính thể tích của khối gỗ sau khi khoét. b) Người ta cần sơn toàn bộ các mặt của khối gỗ, tính diện tích bề mặt phải sơn. + Người cha có một miếng đất hình vuông đem chia cho 5 người con. Người con cả nhận một phần tư miếng đất như hình bên. Phần đất còn lại người cha chia làm bốn phần bằng nhau để cho 4 người em. Hãy vẽ cách chia đó. + Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm BC, D là điểm thuộc đoạn BM (D khác B và M). Kẻ các đường thẳng BH, CI lần lượt vuông góc với đường thẳng AD tại H và I. a) Chứng minh: BAM = ACM và BH = AI. b) Chứng minh: Tam giác MHI vuông cần.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Thọ Xuân - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thọ Xuân, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 12 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Thọ Xuân – Thanh Hoá : + Một đơn vị công nhân sửa đường dự định phân chia số mét đường phải sửa cho 3 tổ: Tổ 1, Tổ 2, Tổ 3 tương ứng theo tỷ lệ 4 : 5 : 6. Nhưng sau đó, vì số người thay đổi nên đơn vị đã chia lại số mét đường phải sửa cho Tổ 1, Tổ 2, Tổ 3 tương ứng theo tỷ lệ 3 : 4 : 5. Do đó, có một tổ làm ít hơn dự định là 20m đường. Tính số mét đường đơn vị đã chia lại cho mỗi tổ. + Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p + 1)(p − 1) chia hết cho 24. + Cho tam giác ABC vuông cân có đáy là BC. Gọi M, N lần lượt là trung điểm của AB và AC. Kẻ NH vuông góc với CM tại H. Kẻ HE vuông góc với AB tại E. Kẻ AK vuông góc với CM tại K. Kẻ AQ vuông góc với HN tại Q. 1. Chứng minh rằng AK = HC = AQ. Tính số đo góc BKA. 2. Chứng minh tam giác ABH cân và HM là tia phân giác của góc BHE. 3. Gọi I là điểm di động trên tia CA, J là điểm di động trên tia CB. Xác định vị trí các điểm I, J sao cho tam giác HJI có chu vi bé nhất.