Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm định HSG Toán 8 năm 2022 - 2023 phòng GDĐT Triệu Sơn - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm định chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 17 tháng 03 năm 2023. Trích dẫn Đề kiểm định HSG Toán 8 năm 2022 – 2023 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Cho a2(b + c) = b2(c + a) = 2023 với a, b, c đôi một khác nhau và khác không. Tính giá trị của biểu thức P = c2(a + b). + Cho p là số nguyên tố thỏa mãn (p + 1)/2 và (p2 + 1)/2 đều là số chính phương. Chứng minh p2 − 1 chia hết cho 48. + Hình bình hành ABCD có O là giao điểm của hai đường chéo. Kẻ CP vuông góc với đường thẳng AB tại P, CQ vuông góc với đường thẳng AD tại Q. 1. Chứng minh CP.AB = CQ.AD và CPQ đồng dạng với BCA. 2. Gọi M, N lần lượt là trung điểm của OB và OA. Lấy điểm F trên cạnh AB sao cho tia FM cắt cạnh BC tại E và tia FN cắt cạnh AD tại K. 3. Xác định vị trí điểm F để tổng BE + AK có giá trị nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG huyện Toán 8 năm 2015 - 2016 phòng GDĐT Hoài Nhơn - Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 đề thi HSG huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Hoài Nhơn – Bình Định, kỳ thi được diễn ra ngày 23 tháng 04 năm 2016, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Hoài Nhơn – Bình Định : + Cho tam giác ABC có A > B. Trên cạnh BC lấy điểm H sao cho HAC = ABC. Đường phân giác của góc BAH cắt BH ở E. Từ trung điểm M của AB kẻ ME cắt đường thẳng AH tại F. Chứng minh rằng: CF // AE. + Chứng minh rằng: Chữ số tận cùng của hai số tự nhiên n và n5 là như nhau. + Tìm tất cả các số nguyên x thỏa mãn: x2 + x – p = 0; với p là số nguyên tố.
Đề thi HSG Toán 8 năm 2015 - 2016 phòng GDĐT thị xã Giá Rai - Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán 8 năm 2015 – 2016 phòng GD&ĐT thị xã Giá Rai – Bạc Liêu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi học sinh giỏi Toán 8 cấp tỉnh năm 2015 - 2016 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 8 cấp tỉnh năm 2015 – 2016 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 03 tháng 04 năm 2016.
Đề thi HSG Toán 8 cấp huyện năm 2015 - 2016 phòng GDĐT Sông Lô - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG Toán 8 cấp huyện năm 2015 – 2016 phòng GD&ĐT Sông Lô – Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 8 cấp huyện năm 2015 – 2016 phòng GD&ĐT Sông Lô – Vĩnh Phúc : + Trong bảng ô vuông kích thước 8×8 gồm 64 ô vuông đơn vị, người ta đánh dấu 13 ô bất kì. Chứng minh rằng với mọi cách đánh dấu luôn có ít nhất 4 ô được đánh dấu không có điểm chung (hai ô có điểm chung là 2 ô chung đỉnh hoặc chung cạnh). + Cho tam giác ABC đều cạnh 2a, M là trung điểm của BC. Góc xMy = 60 độ quay quanh đỉnh M cố định sao cho hai tia Mx, My cắt AB, AC lần lượt tại D và E. Chứng minh rằng: a. Tam giác BDM đồng dạng với tam giác CME và tích BD.CE không phụ thuộc vào vị trí của xMy. b. DM là phân giác của BDE. c. BD.ME + CE.MD > a.DE. d. Chu vi tam giác ADE không đổi khi xMy quay quanh M. + Cho biểu thức A. a. Tìm điều kiện xác định và rút gọn biểu thức A. b. Tìm x để A nhận giá trị là số âm. c. Tìm giá trị nguyên của x để biểu thức (x + 2).A nhận giá trị là số nguyên.