Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Số phức (dành cho học sinh Yếu - TB) - Đặng Việt Đông

giới thiệu đến bạn đọc tài liệu chuyên đề số phức dành cho học sinh Yếu – TB, tài liệu được biên soạn bởi thầy Đặng Việt Đông gồm 31 trang, tóm tắt lý thuyết cơ bản số phức và tuyển chọn các bài tập trắc nghiệm số phức ở mức độ nhận biết – thông hiểu, giúp học sinh nắm được cách giải một số dạng toán cơ bản về số phức, các bài tập trong tài liệu được phân tích và giải chi tiết. Khái quát số phức (dành cho học sinh Yếu – TB) – Đặng Việt Đông: Bài 1 : SỐ PHỨC VÀ CÁC PHÉP TOÁN SỐ PHỨC 1. Khái niệm số phức. + Số phức (dạng đại số) z = a + bi (a, b thuộc R), trong đó a là phần thực, b là phần ảo, i là đơn vị ảo, i^2 = -1. + Tập hợp số phức kí hiệu C. + z là số thực khi và chỉ khi phần ảo của z bằng 0. + z là số ảo (hay còn gọi là số thuần ảo khi và chỉ khi phần thực bằng 0. + Số 0 vừa là số thực vừa là số ảo. 2. Hai số phức bằng nhau. + Hai số phức z1 = a + bi (a, b thuộc R) và z2 = c + di (c, d thuộc R) và bằng nhau khi phần thực và phần ảo của chúng tương đương bằng nhau. 3. Số phức liên hợp. + Số phức liên hợp của z = a + bi (a, b thuộc R) là z¯ = a – bi. 4. Môđun của số phức. + Độ dài của vectơ OM được gọi là môđun của số phức z và kí hiệu là |z|. + Một số tính chất môđun của số phức. 5. Phép cộng trừ nhân chia số phức. [ads] Bài 2 : PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC 1. Căn bậc hai của số thực âm. + Cho số z, nếu có số phức z1 sao cho z1^2 = z thì ta nói z1 là một căn bậc hai của z. + Mọi số phức z khác 0 đều có hai căn bậc hai. + Căn bậc hai của số thực âm z là ±i√|z|. 2. Phương trình bậc hai với hệ số thực. Cho phương trình bậc hai ax^2 + bx + c = 0 (a, b, c thuộc R, a khác 0). Xét biệt số Δ = b^2 – 4ac của phương trình. Ta thấy: + Khi Δ = 0 phương trình có một nghiệm thực x = -b/2a. + Khi Δ > 0 phương trình có hai nghiệm thực phân biệt x = (-b ± √Δ)/2a. + Khi Δ < 0 phương trình có hai nghiệm phức x = (-b ± i√|Δ|)/2a. Bài 3 : TẬP HỢP ĐIỂM BIỂU DIỄN SỐ PHỨC 1. Biểu diễn hình học số phức. + Số phức z = a + bi (a, b thuộc R) được biểu diễn bởi điểm M(a;b) hay vectơ u = (a;b) trong mặt phẳng phức với hệ tọa độ Oxy. 2. Một số tập hợp điểm biểu diễn số phức z thường gặp. + ax + by + c = 0: tập hợp điểm là đường thẳng. + x = 0: tập hợp điểm là trục tung Oy, y = 0: tập hợp điểm là trục hoành Ox. + (x – a)^2 + (y – b)^2 < R^2: tập hợp điểm là hình tròn tâm I(a;b), bán kính R. + (x – a)^2 + (y – b)^2 = R^2, x^2 + y^2 – 2ax – 2by + c = 0: tập hợp điểm là đường tròn có tâm I(a;b) bán kính R. + x > 0: tập hơp điểm là miền bên phải trục tung, y < 0: tập hợp điểm là miền phía dưới trục hoành, x < 0: tập hợp điểm là miền bên trái trục tung, y > 0: tập hợp điểm là phía trên trục hoành. + y = ax^2 + bx + c: tập hợp điểm là đường Parabol. + x^2/a^2 + y^2/b^2 = 1: tập hợp điểm là đường Elip. + x^2/a^2 – y^2/b^2 = 1: tập hợp điểm là đường Hyperbol.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm tập hợp điểm biểu diễn số phức
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm tập hợp điểm biểu diễn số phức, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 4: Số phức. Bên cạnh tài liệu tập hợp điểm biểu diễn số phức dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm tập hợp điểm biểu diễn số phức: A. KIẾN THỨC CƠ BẢN I. Các kiến thức cơ bản về số phức : Khái niệm số phức, Biểu diễn hình học của số phức, Các phép toán về số phức. II. Kiến thức về hình học giải tích trong mặt phẳng : Các dạng phương trình đường thẳng, Phương trình đường tròn, Phương trình Elip. III. Một số chú ý trong giải bài toán tìm tập hợp điểm 1. Phương pháp tổng quát. Giả sử số phức $z = x + yi$ được biểu diễn bởi điểm $M(x;y).$ Tìm tập hợp các điểm $M$ là tìm hệ thức giữa $x$ và $y$ thỏa mãn yêu cầu đề bài. 2. Giả sử các điểm $M$, $A$, $B$ lần lượt là điểm biểu diễn của các số phức $z$, $a$, $b.$ $|z – a| = |z – b|$ $ \Leftrightarrow MA = MB$ $ \Leftrightarrow M$ thuộc đường trung trực của đoạn $AB.$ $|z – a| = |z – b| = k$ ($k \in R$, $k > 0$, $k > |a – b|$) $ \Leftrightarrow MA + MB = k$ $ \Leftrightarrow M \in (E)$ nhận $A$, $B$ là hai tiêu điểm và có độ dài trục lớn bằng $k.$ 3. Giả sử $M$ và $M’$ lần lượt là điểm biểu diễn của số phức $z$ và $w = f(z).$ Đặt $z = x + yi$ và $w = u + vi$ $(x,y,u,v ∈ R).$ Hệ thức $w = f(z)$ tương đương với hai hệ thức liên hệ giữa $x$, $y$, $u$, $v.$ + Nếu biết một hệ thức giữa $x$, $y$ ta tìm được một hệ thức giữa $u$, $v$ và suy ra được tập hợp các điểm $M’.$ + Nếu biết một hệ thức giữa $u$, $v$ ta tìm được một hệ thức giữa $x$, $y$ và suy ra được tập hợp điểm $M’.$ B. KỸ NĂNG CƠ BẢN + Các kĩ năng biến đổi, thực hiện phép tính về số phức. + Kĩ năng biến đổi biểu thức đại số, tính khoảng cách.
Tóm tắt lý thuyết và bài tập trắc nghiệm phương trình bậc hai với hệ số thực trên tập số phức
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình bậc hai với hệ số thực trên tập số phức, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 4: Số phức. Bên cạnh tài liệu phương trình bậc hai với hệ số thực trên tập số phức dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình bậc hai với hệ số thực trên tập số phức: A. KIẾN THỨC CƠ BẢN 1. Căn bậc hai của số phức. 2. Phương trình bậc hai với hệ số thực. B. KỸ NĂNG CƠ BẢN 1. Dạng 1 : Tìm căn bậc hai của một số phức. 2. Dạng 2 : Giải phương trình bậc hai với hệ số thực và các dạng toán liên quan. a. Giải các phương trình bậc hai với hệ số thực. b. Giải phương trình quy về phương trình bậc hai với hệ số thực. Phương pháp 1 : Phân tích đa thức thành nhân tử. + Bước 1: Nhẩm một nghiệm đặc biệt của phương trình. + Bước 2: Đưa phương trình về phương trình bậc nhất hoặc bậc hai bằng cách phân tích đa thức ở vế trái của phương trình thành nhân tử (dùng hằng đẳng thức, chia đa thức hoặc sử dụng lược đồ Hoocne). + Bước 3: Giải phương trình bậc nhất hoặc bậc hai, kết luận nghiệm. Phương pháp 2 : Đặt ẩn phụ: + Bước 1: Phân tích phương trình thành các đại lượng có dạng giống nhau. + Bước 2: Đặt ẩn phụ, nêu điều kiện của ẩn phụ (nếu có). + Bước 3: Đưa phương trình ban đầu về phương trình bậc nhất, bậc hai với ẩn mới. + Bước 4: Giải phương trình, kết luận nghiệm. C. KỸ NĂNG SỬ DỤNG MÁY TÍNH 1. Chọn chế độ tính toán với số phức. 2. Tìm các căn bậc hai của một số phức. D. BÀI TẬP TRẮC NGHIỆM E. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm dạng đại số và các phép toán trên tập số phức
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm dạng đại số và các phép toán trên tập số phức, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 4: Số phức. Bên cạnh tài liệu dạng đại số và các phép toán trên tập số phức dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm dạng đại số và các phép toán trên tập số phức: A. KIẾN THỨC CƠ BẢN 1. Các định nghĩa: Đơn vị ảo, Số phức, Tập số phức, Hai số phức bằng nhau. 2. Môđun của số phức. 3. Số phức liên hợp. 4. Phép toán trên tập số phức: Phép cộng số phức, Phép trừ số phức, Phép nhân số phức, Phép chia số phức. B. BÀI TẬP TRẮC NGHIỆM C. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM
Tài liệu tự học chuyên đề số phức - Nguyễn Trọng
Tài liệu gồm 81 trang được biên soạn bởi thầy Nguyễn Trọng, hướng dẫn tự học chuyên đề số phức, thuộc chương trình Giải tích 12 chương 3, tài liệu phù hợp đối với học sinh theo học ban cơ bản, ôn thi THPT Quốc gia khối Khoa học Xã hội. Mục lục tài liệu tự học chuyên đề số phức – Nguyễn Trọng: Bài 1 . Số phức. + Dạng 1. Xác định các yếu tố cơ bản của số phức. + Dạng 2. Biểu diễn hình học của số phức. + Dạng 3. Số phức bằng nhau. + Đề kiểm tra 45 phút Số phức. Bài 2 . Cộng trừ và nhân số phức. + Dạng 1. Thực hiện phép tính. + Dạng 2. Xác định các yếu tố cơ bản của số phức qua các phép toán. + Dạng 3. Bài toán quy về phương trình hệ phương trình nghiệm thực. + Dạng 4. Bài toán tập hợp điểm biểu diễn số phức. + Bài kiểm tra 45 phút Cộng trừ và nhân số phức. [ads] Bài 3 . Phép chia số phức. + Dạng 1. Thực hiện phép tính. + Dạng 2. Thực hiện phép tính từ đó suy ra các yếu tố liên quan đến số phức. + Dạng 3. Giải phương trình bậc nhất từ đó suy ra các yếu tố liên quan đến số phức. + Bài kiểm tra 45 phút Phép chia số phức. Bài 4 . Phương trình bậc hai với hệ số thực. + Dạng 1. Tìm căn bậc hai của số thực âm. + Dạng 2. Tìm nghiệm phức của phương trình bậc hai – tìm các yếu tố liên quan đến hai nghiệm. + Dạng 3. Tìm nghiệm phức của phương trình bậc cao. + Dạng 4. Mối liên hệ giữa hai nghiệm của phương trình bậc hai, tìm phương trình khi biết trước nghiệm của nó. + Đề kiểm tra 45 phút Phương trình bậc hai với hệ số thực.