Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 11 năm 2022 - 2023 cụm các trường THPT - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi Olympic chọn học sinh giỏi môn Toán 11 cấp cụm năm học 2022 – 2023 cụm các trường THPT trực thuộc sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào thứ Tư ngày 15 tháng 03 năm 2023. Trích dẫn Đề thi Olympic Toán 11 năm 2022 – 2023 cụm các trường THPT – Hà Nội : + Hỏi có bao nhiêu số tự nhiên có sáu chữ số đôi một khác nhau tạo thành từ các chữ số 0, 1, 2, 3, 4, 5 sao cho hai chữ số 2 và 3 đứng cạnh nhau. + Cho hình chóp tam giác đều S.ABC, độ dài cạnh đáy là a và đường cao SO = 2a. Gọi H là trung điểm của BC, M là điểm thuộc đoạn thẳng OH (M khác O; M khác H). 1) Tính cosin góc giữa AH và SB. 2) Gọi (a) là mặt phẳng qua M và vuông góc với AH. Xác định thiết diện của hình chóp S.ABC cắt bởi (a). 3) Tính tỷ số AM/AH khi diện tích thiết diện của mặt phẳng (a) cắt hình chóp S.ABC đạt giá trị lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi Olympic Toán 11 năm 2018 2019 trường THPT Kim Liên Hà Nội
giới thiệu đến thầy, cô và các em học sinh khối 11 nội dung đề thi Olympic Toán 11 năm 2018 – 2019 trường THPT Kim Liên – Hà Nội, đề thi gồm 01 trang với 06 bài toán tự luận, học sinh làm bài trong 150 phút (không tính khoảng thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi Olympic Toán 11 năm 2018 – 2019 trường THPT Kim Liên – Hà Nội : + Danh sách đăng kí dự thi Olympic cấp trường của lớp 11A trường THPT Kim Liên – Hà Nội có 25 học sinh, mỗi em đăng kí dự thi một môn trong số các môn: Toán, Văn, Tin học, Sinh học, Lịch Sử, Vật lí, Hóa học, Anh và Địa Lí. Trong đó có 6 học sinh đăng kí dự thi môn Toán và 5 học sinh đăng kí dự thi môn Anh. Chọn ngẫu nhiên 3 học sinh trong danh sách trên, tính xác suất để trong 3 học sinh đó có cả học sinh đăng kí dự thi môn Toán và học sinh đăng kí dự thi môn Anh. [ads] + Cho hình lập phương ABCD.A’B’C’D’ cạnh bằng 1. Lấy điểm I thuộc cạnh AB, điểm E thuộc cạnh DD’ sao cho AI = D’E = x (0 < x < 1). a) Chứng minh IE vuông góc với A’C. b) Tìm x để góc giữa hai đường thẳng AC’ và DI bằng 60 độ. c) Gọi M, N lần lượt là trung điểm của các cạnh AB, A’D’. Xác định giao điểm K của mặt phẳng (CMN) với đường thẳng B’C’ và tính tỉ số B’K/B’C’. + Cho số thực a ∈ (0;1) và dãy số (un) xác định bởi: u1 = 1, un+1 = (a.un^3 + a – 1)^1/3, n thuộc N*. a) Gọi (vn) là dãy số xác định bởi vn = un^3 + 1. Chứng minh rằng dãy số (vn) là một cấp số nhân lùi vô hạn. b) Tìm tất cả các giá trị của a biết rằng: lim (u1^2 + u2^3 + … + un^3 + n) = 4.
Đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2018 - 2019 sở GDĐT Vĩnh Long
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi cấp tỉnh Toán 11 năm học 2018 – 2019 sở Giáo dục và Đào tạo tỉnh Vĩnh Long; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2018 – 2019 sở GD&ĐT Vĩnh Long : + Cho cấp số nhân có bốn số hạng có tổng các số hạng bằng 15 và tổng bình phương của các số hạng này bằng 85. Tìm cấp số nhân đó. + Cho m, n là các số nguyên dương, m khác n và (un) là một cấp số cộng có tính chất 4n = 1/m và um = 1/n. Tính tổng Smn của mn số hạng đầu tiên của cấp số cộng trên theo m, n. + Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC có A(1;7), B(-2;0), C(9;0). Xét hình chữ nhật MNPQ với M thuộc đoạn AB, N thuộc đoạn AC và P, Q nằm trong đoạn BC. Xác định tọa độ điểm M sao cho hình chữ nhật MNPQ có diện tích lớn nhất.
Đề thi Olympic 103 Toán 11 năm 2019 lần 4 trường chuyên Nguyễn Du Đăk Lăk
Đề thi HSG Toán 11 năm 2018 - 2019 trường Phùng Khắc Khoan - Hà Nội
Nhằm tuyển chọn các em học sinh giỏi Toán 11 để tuyên dương, khen thưởng, làm tấm gương cho các học sinh khác, đồng thời bổ sung vào đội tuyển học sinh giỏi Toán 11 cấp trường, vừa qua, trường THPT Phùng Khắc Khoan – Thạch Thất – Hà Nội đã tiến hành tổ chức kỳ thi học sinh giỏi Toán 11, các em học sinh được chọn trong kỳ thi lần này sẽ được tiếp tục bồi dưỡng để tham dự kỳ thi học sinh giỏi Toán 11 cấp thành phố. Đề thi HSG Toán 11 năm 2018 – 2019 trường Phùng Khắc Khoan – Hà Nội được biên soạn theo hình thức tự luận, đề gồm 1 trang với 5 bài toán, thời gian làm bài thi Toán là 150 phút. [ads] Trích dẫn đề thi HSG Toán 11 năm 2018 – 2019 trường Phùng Khắc Khoan – Hà Nội : + An và Bình thi đấu với nhau một trận bóng bàn có tối đa 5 séc, người nào thắng trước 3 séc sẽ giành chiến thắng chung cuộc. Xác suất An thắng mỗi séc là 0,4 (không có hòa). Tính xác suất để An thắng chung cuộc. + Trong mặt phẳng tọa độ Oxy, cho các điểm A(-2;3), A'(1;5) và B(5;-3), B'(7;-2). Phép quay tâm I(x;y) biến A thành A’ và B thành B’, tính x + y. + Cho a, b, c là ba hằng số và (un) là dãy số được xác định bởi công thức: un = a√(n + 1) + b√(n + 2) + c√(n + 3) (với mọi n thuộc N*). Chứng minh rằng limun = 0 (n tiến đến vô cùng) khi và chỉ khi a + b + c = 0.