Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Số phức và một số ứng dụng - Nguyễn Tài Chung

Tài liệu gồm 45 trang được biên soạn bởi thầy giáo Nguyễn Tài Chung (giáo viên Toán trường THPT Chuyên Hùng Vương, tỉnh Gia Lai) giới thiệu một số ứng dụng của số phức trong việc giải các bài toán liên quan đến chứng minh bất đẳng thức, giải phương trình, hệ phương trình, phương trình hàm đa thức. Khái quát nội dung tài liệu số phức và một số ứng dụng – Nguyễn Tài Chung: BÀI 1 . SỐ PHỨC VÀ MỘT VÀI ỨNG DỤNG • Sử dụng số phức chứng minh bất đẳng thức Ta xét một số ví dụ về dùng số phức để chứng minh bất đẳng thức. Đây là phương pháp rất độc đáo, thú vị, dùng cái ảo để chứng minh cái thực. • Sử dụng số phức giải phương trình, hệ phương trình Một phương trình nghiệm phức f(z) = 0, với z = x + iy, ta biến đổi thành: h(x,y) + ig(x,y) = 0 ⇔ h(x,y) = 0 và g(x,y) = 0. Nghĩa là một phương trình nghiệm phức, bằng cách tách phần thực và phần ảo luôn có thể đưa về hệ phương trình. • Hệ lặp sinh bởi các đa thức đối xứng ba biến • Sử dụng số phức để giải phương trình hàm đa thức Nghiệm của đa thức đóng vai trò quan trọng trong việc xác định một đa thức. Cụ thể, nếu đa thức P(x) bậc n (n ∈ N*) có n nghiệm x1, x2, . . . , xn thì P(x) có dạng P(x) = c(x − x1)(x − x2). . .(x − xn). Tuy nhiên nếu chỉ xét các nghiệm thực thì trong nhiều trường hợp sẽ không đủ số nghiệm. Hơn nữa trong bài toán phương trình hàm đa thức, nếu chỉ xét các nghiệm thực thì lời giải sẽ không hoàn chỉnh. Định lí cơ bản của đại số vì vậy đóng một vai trò hết sức quan trọng trong dạng toán này.

Nguồn: toanmath.com

Đọc Sách

Số phức và các dạng toán - Phùng Hoàng Em
Tài liệu gồm 37 trang do thầy Phùng Hoàng Em biên soạn tóm tắt lý thuyết số phức, phân dạng, ví dụ minh họa có lời giải và tuyển tập các bài tập trắc nghiệm có đáp án chuyên đề số phức. I. TÓM TẮT LÝ THUYẾT SỐ PHỨC  1. Số phức và các khái niệm liên quan 2. Phép toán trên số phức 3. Phương trình bậc hai với hệ số thực II. CÁC DẠNG TOÁN SỐ PHỨC THƯỜNG GẶP Dạng 1. Xác định các đại lượng liên quan đến số phức Dạng 2. Số phức bằng nhau Dạng 3. Điểm biểu diễn số phức Dạng 4. Lũy thừa với đơn vị ảo [ads] Dạng 5. Phương trình với hệ số phức Dạng 6. Phương trình bậc hai với hệ số thực và một số phương trình quy về bậc hai Dạng 7. Xác định số phức bằng cách giải hệ phương trình Dạng 8. Biễu diễn hình học của số phức Dạng 9. Max- min của mô-đun số phức III. BÀI TẬP TRẮC NGHIỆM TỔNG ÔN SỐ PHỨC CÓ ĐÁP ÁN
Chuyên đề số phức - Lê Văn Đoàn
Tài liệu gồm 119 trang tóm tắt lý thuyết số phức cơ bản và tuyển chọn các bài tập tự luận – trắc nghiệm về các chủ đề trong chuyên đề số phức: dạng đại số của số phức, dạng hình học của số phức và phương trình bậc hai trên tập số phức, các bài tập có đáp án và hướng dẫn giải. Tài liệu được biên soạn bởi thầy Lê Văn Đoàn. Các dạng bài tập số phức được đề cập bao gồm: DẠNG ĐẠI SỐ CỦA SỐ PHỨC + Dạng 1. Tìm các số thực x và y thỏa các điều kiện sau (nhóm sử dụng 2 số phức bằng nhau) + Dạng 2. Nhóm bài toán tìm phần thực, phần ảo, số phức liên hợp và môđun của z, w (loại 1) + Dạng 3. Nhóm bài toán tìm phần thực, phần ảo, số phức liên hợp và môđun của z (loại 2) + Dạng 4. Nhóm bài toán tìm các số phức z thỏa mãn biểu thức số phức là số thực, số thuần ảo + Dạng 5. Nhóm bài toán lấy môđun hai vế của đẳng thức số phức (đề cần tính |z| hoặc P(|z|) + Dạng 6. Nhóm bài toán chuẩn hóa số phức + Dạng 7. Nhóm bài toán sử dụng bất đẳng thức trong số phức DẠNG HÌNH HỌC CỦA SỐ PHỨC + Dạng 1. Bài toán xác định điểm biểu diễn của số phức + Dạng 2. Tập hợp điểm là đường thẳng + Dạng 3. Tập hợp điểm là đường tròn, hình tròn, hình vành khăn + Dạng 4. Tập hợp điểm là một elip + Dạng 5. Bài toán liên quan đến giá trị lớn nhất, giá trị nhỏ nhất a. Phương pháp 1. Lượng giác hóa b. Phương pháp 2. Bình phương vô hướng c. Phương pháp 3. Hình chiếu và tương giao PHƯƠNG TRÌNH BẬC HAI TRÊN TẬP SỐ PHỨC
Chuyên đề số phức - Bùi Trần Duy Tuấn
Tài liệu chuyên đề số phức gồm 129 trang được thầy Bùi Trần Duy Tuấn biên soạn để làm tư liệu cho các em lớp 12 ôn thi kỳ thi THPT Quốc gia tham khảo, giúp các em ôn lại kiến thức số phức nhanh chóng và hiệu quả hơn. Tất cả các bài toán trong chuyên đề số phức này đều được giải chi tiết. Nội dung tài liệu : A. Các phép toán cơ bản trên tập số phức  I. Lý thuyết II. Các dạng toán với các phép toán cơ bản III. Sử dụng máy tính casio 570vn-plus để giải IV. Bài tập rèn luyện B. Căn bậc hai của số phức và phương trình bậc hai  I. Căn bậc hai của số phức II. Giải phương trình bậc hai 1. Giải phương trình bậc hai trên tập số phức 2. Đưa phương trình bậc cao về những phương trình bậc nhất, phương trình bậc hai III. Sử dụng máy tính Casio 570VN Plus để giải 1. Bài toán tìm căn bậc hai của một số phức 2. Giải phương trình bậc hai IV. Bài tập rèn luyện [ads] C. Tập hợp điểm của số phức I. Lý thuyết II. Một số bài toán điển hình III. Sử dụng máy tính casio để giải IV. Bài tập rèn luyện D. Bài toán cực trị của số phức I. Các bài toán qui về bài toán tìm giá trị lớn nhất, nhỏ nhất của hàm một biến II. Các bài toán qui về bài toán tìm giá trị lớn nhất, nhỏ nhất của một biểu thức hai biến mà các biến thoả mãn điều kiện cho trước III. Sử dụng máy tính Casio 570VN Plus để giải IV. Bài tập rèn luyện E. Dạng lượng giác của số phức I. Lý thuyết II. Một số bài toán điển hình III. Sử dụng máy tính casio 570vn-plus để giải IV. Một số bài toán về ứng dụng của dạng lượng giác V. Bài tập rèn luyện F. Luyện tập
Giải nhanh GTLN - GTNN mô đun số phức với Elip và không Elip - Lục Trí Tuyên
Tài liệu gồm 19 trang tuyển tập một số dạng và phương pháp giải bài toán GTLN – GTNN mô đun số phức, tài liệu có các ví dụ minh họa kèm lời giải chi tiết. Nội 1. Hình dạng và thông số của Elip 2. Bài toán liên quan Bài toán chung: Cho M chuyển động trên Elip (E) và một điểm A cố định. Tìm GTLN, GTNN của AM Bài toán số phức tương ứng: Cho số phức z thoả mãn |z – z1| + |z – z2| = 2a với 2a > |z1 – z2|. Tìm GTLN, GTNN của P = |z – z0| Sự tương ứng ở đây gồm: + M là điểm biểu diễn z + F1, F2 tương ứng là điểm biểu diễn z1, z2 + A là điểm biểu diễn z0 3. Các dạng giải được + Bài toán 1. Phương trình (E) dạng chính tắc: x^2/a^2 + y^2/b^2 = 1 Bài toán số phức tương ứng: Cho số phức z thoả mãn |z – c| + |z + c| = 2a hoặc |z – ci| + |z + ci| = 2a (Elip đứng). Tìm GTLN, GTNN của P = |z – z0| + Bài toán 2. Elip không chính tắc nhưng A là trung điểm của F1F2 tức A là tâm Elip Bài toán số phức tương ứng: Cho số phức z thoả mãn |z – z1| + |z – z2| = 2a với 2a > |z1 – z2|. Tìm GTLN, GTNN của P = |z – z0| với đặc điểm nhận dạng z0 = (z1 + z2)/2 + Bài toán 3. Elip không có dạng chính tắc, A không là trung điểm của F1F2 nhưng A nằm trên các trục của Elip [ads] ELIP SUY BIẾN Bài toán: Cho số phức z thoả mãn |z – z1| + |z – z2| = 2a nhưng có |z1 – z2| = 2a. Tìm GTLN, GTNN của T = |z – z0| GTLN-GTNN CỦA MÔ ĐUN SỐ PHỨC KHÔNG ELIP + Dạng 1: Tìm |z| hoặc z thoả mãn phương trình z.f(|z|) = g(|z|) nghĩa là phương trình bậc nhất ẩn z chứa |z| + Dạng 2: Cho |z1| = m, |z2| = n và |az1 + bz2| = p. Tính q = |cz1 + dz2| + Dạng 3. Cho số phức z thỏa mãn |z – z0| = R. Tìm GTLN của P = a|z – z1| + b|z – z2| biết rằng z0 – z1 = -k(z0 – z2) (k > 0) và a, b ∈ R + Dạng 4. Cho số phức z thõa mãn |z + z0/z| ≤ k (k > 0) hay dạng tương đương |z^2 + z0| ≤ k|z|, (k > 0). Tìm GTLN, GTNN của T = |z| + Dạng 5. Cho số phức z thỏa mãn |z1.z – z2 = k > 0. Tìm GTLN, GTNN của T = |z – z0| + Dạng 6. Cho số phức z thỏa mãn |z – z1| = |z – z2|. Tìm GTNN của T = |z – z0| + Dạng 7. Cho hai số phức z1, z2 thỏa mãn |z1 – z1*| = R và |z2 – z2*| = |z2 – z3*|, với z1*, z2* và z3* cho trước. Tìm GTNN của T = |z1 – z2| Lời kết : Các bài toán trên có thể giải bằng phương pháp đại số bằng cách rút một ẩn theo ẩn còn lại từ giả thiết để thay vào biểu thức cần đánh giá thành hàm số dạng T = f(x). Sau đó tìm GTLN, GTNN của trên miền xác định của f(x). Các đánh giá đảm bảo chặt chẽ cần chứng tỏ có đẳng thức (dấu “=”) xảy ra. Để tránh phức tạp vấn đề tôi không trình bày ở đây. Tuy nhiên các bài toán tổng quát đã nêu đều đảm bảo điều đó.