Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập phương pháp tọa độ trong không gian - Nguyễn Hoàng Việt

Tài liệu gồm 273 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tuyển tập các dạng bài tập trắc nghiệm chủ đề phương pháp tọa độ trong không gian Oxyz, giúp học sinh lớp 12 rèn luyện khi học chương trình Hình học 12 chương 3. 1 HỆ TỌA ĐỘ TRONG KHÔNG GIAN. 1. Bài toán liên quan đến véc-tơ và độ dài đoạn thẳng. 2. Bài toán liên quan đến trung điểm tọa độ trọng tâm. 3. Bài toán liên quan đến hai vé-tơ bằng nhau. 4. Hai véc-tơ cùng phương, ba điểm thẳng hàng. 5. Nhóm bài toán liên quan đến hình chiếu, điểm đối xứng của điểm lên trục, lên mặt phẳng tọa độ. 6. Nhóm bài toán liên quan đến tích vô hướng của hai véc-tơ. 7. Nhóm bài toán liên quan đến tích có hướng của hai véc-tơ. 8. Xác định các yếu tố cơ bản của mặt cầu. 9. Viết phương trình mặt cầu loại cơ bản. 2 PHƯƠNG TRÌNH MẶT PHẲNG. 1. Véc-tơ pháp tuyến – Véc-tơ chỉ phương. 2. Phương trình tổng quát của mặt phẳng. 3. Phương trình mặt phẳng theo đoạn chắn. 4. Các mặt phẳng tọa độ (thiếu cái gì, cái đó bằng 0). 5. Khoảng cách. 6. Góc. 7. Vị trí tương đối. 8. Các trường hợp đặc biệt của mặt phẳng. 9. Xác định các yếu tố của mặt phẳng. 10. Khoảng cách, góc và vị trí tương đối. 11. Viết phương trình mặt phẳng (cần tìm một điểm đi qua + VTPT). 12. Viết phương trình mặt phẳng đi qua một điểm và có cặp véc-tơ chỉ phương. 13. Viết phương trình mặt phẳng (P) qua điểm A, B và vuông góc với mặt phẳng (Q). 14. Viết phương trình mặt phẳng (P) qua M và vuông góc với hai mặt phẳng (α), (β). 15. Viết phương trình mặt phẳng đoạn chắn. 16. Một số bài toán viết phương trình mật phẳng liên quan đến khoảng cách cơ bản. 17. Viết phương trình mặt phẳng (P) đi qua M và qua giao tuyến của hai mặt phẳng (α), (β). 3 PHƯƠNG TRÌNH ĐƯỜNG THẲNG. 1. Kiến thức cơ bản cần nhớ. 2. Xác định các yếu tố cơ bản của đường thẳng. 3. Góc. 4. Khoảng cách. 5. Vị trí tương đối. 6. Viết phương trình đường thẳng. 7. Hình chiếu, điểm đối xứng và bài toán liên quan (vận dụng cao). 8. Bài toán cực trị và một số bài toán khác (vận dụng cao).

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm hình học không gian - Lê Viết Nhơn
Tài liệu gồm 68 trang tuyển tập các bài toán trắc nghiệm chuyên đề hình học không gian. Nội dung tài liệu gồm 2 chương: Chương I. Khối đa diện – thể tích khối đa diện Bài 1. Góc_khoảng cách Bài 2. Khối đa diện Bài 3. Thể tích Bài tập trắc nghiệm Phần 1. Khối đa diện Phần 2. Thể tích Phần 3. Tỷ số thể tích Phần 4. Góc – khoảng cách Phần 5. Mặt cầu ngoại tiếp khối đa diện Chương II. Mặt nón – mặt trụ – mặt cầu Phần 6. Mặt nón Phần 7. Mặt trụ Phần 8. Mặt cầu [ads] Trích dẫn tài liệu : + Từ một mảnh giấy hình vuông cạnh là 4cm, người ta gấp nó thành bốn phần đều nhau rồi dựng lên thành bốn mặt xung quanh của hình hình lăng trụ tứ giác đều như hình vẽ. Hỏi thể tích của khối lăng trụ này là bao nhiêu. + Khối lăng trụ ABC.A’B’C’ có đáy là một tam giác đều cạnh a, góc giữa cạnh bên và mặt phẳng đáy bằng 30 độ. Hình chiếu của đỉnh A’ trên mặt phẳng đáy (ABC) trùng với trung điểm của cạnh BC. Tính thể tích của khối lăng trụ đã cho. + Người ta cắt miếng bìa hình tam giác cạnh bằng 10cm như hình bên và gấp theo các đường kẻ, sau đó dán các mép lại để được hình tứ diện đều. Tính thể tích của khối tứ diện tạo thành.
Lý thuyết và một số bài tập cơ bản về thể tích khối đa diện - Lê Bá Bảo
Tài liệu gồm 32 trang tổng hợp lý thuyết, công thức giải và một số bài tập thể tích khối đa diện có lời giải chi tiết tương tự các bài toán trong đề minh họa lần 3 của Bộ GD và ĐT. A. Lý thuyết Phần 1. Khối đa diện, tính chất và cách dựng Nêu khái niệm, hình dạng và tính chất của các khối hình: tứ diện, hình chóp, hình lăng trụ, hình hộp, hình chóp tam giác đều, hình chóp tứ giác đều, hình lăng trụ đứng, hình hộp đứng, hình hộp chữ nhật, hình lập phương. [ads] Phần 2. Kỹ năng góc và khoảng cách Nắm vững kỹ năng xác định góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng, góc giữa hai mặt phẳng. Kỹ năng xác định khoảng cách từ một điểm đến đường thẳng, khoảng cách từ điểm đến mặt phẳng, khoảng cách giữa hai đường thẳng chéo nhau. Phần 3. Các kết quả và tính chất quan trọng cần lưu ý Các hệ quả rút ra hỗ trợ cho việc giải toán về thể tích khối đa diện B. Bài tập trắc nghiệm thể tích khối đa diện có đáp án và lời giải chi tiết
Bài tập tỷ số thể tích khối đa diện - Lê Bá Bảo
Tài liệu gồm 15 trang trình bày phương pháp, ví dụ mẫu có lời giải chi tiết và bài tập rèn luyện về dạng toán tỷ số thể tích khối đa diện. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm cạnh SA. Mặt phẳng (α) qua M và song song với (ABCD), cắt các cạnh SB, SC, SD lần lượt tại N, P, Q. Gọi V1 = VS.ABCD và V2 = VS.MNPQ. Khẳng định nào sau đây đúng? A. V1 = 8V2 B. V1 = 6V2 C. V1 = 16V2 D. V1 = 4V2 [ads] + Cho khối lăng trụ tam giác ABC.A’B’C’, đường thẳng đi qua trọng tâm tam giác ABC song song với BC cắt AB tại D, cắt AC tại E. Mặt phẳng đi qua A, D, E’ chia khối lăng trụ thành hai phần, tỉ số thể tích (số bé chia cho số lớn) của chúng bằng? + Cho tứ diện ABCD. Gọi B’ và C’ lần lượt là trung điểm của AB và AC. Khi đó tỉ số thể tích của khối tứ diện AB’C’D và khối tứ diện ABCD bằng?
86 bài tập trắc nghiệm thể tích khối chóp có đáp án - Bùi Thái Nam
Tài liệu gồm 9 trang với 86 bài toán trắc nghiệm thuộc chuyên đề thể tích khối chóp có đáp án. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 16 cm, AD = 30 cm và hình chiếu của S trên (ABCD) trùng với giao điểm hai đường chéo AC, BD. Biết rằng mặt phẳng (SCD) tạo với mặt đáy một góc φ sao cho cosφ = 5/13. Tính thể tích khối chóp S.ABCD. [ads] + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = AC = a. Hình chiếu vuông góc của S lên mặt phẳng (ABC) là trung điểm H của BC, mặt phẳng (SAB) tạo với đáy một góc bằng 60 độ. Thể tích khối chóp S.ABC là? + Cho hình chóp S.ABC có tam giác ABC vuông tại A , AB = AC = a, I là trung điểm của SC, hình chiếu vuông góc của S lên mặt phẳng ( ABC) là trung điểm H của BC, mặt phẳng (SAB) tạo với đáy 1 góc bằng 60 độ. Thể tích khối chóp S.ABC là?