Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tuyển sinh vào lớp 10 môn Toán năm 2019 - 2020 tỉnh Ninh Bình có đáp án

Nguồn: onluyen.vn

Đọc Sách

Đề thi thử Toán vào 10 lần 1 năm 2024 - 2025 trường Lương Thế Vinh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 lần 1 năm học 2024 – 2025 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 07 tháng 01 năm 2024. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2024 – 2025 trường Lương Thế Vinh – Hà Nội : + Cho ba đường thẳng (d1): y = x + 2; (d2): y = 2x + 1; (d3): y = (m2 + 1)x + m. a) Tìm giá trị của m để đường thẳng (d2) và (d3) song song với nhau. b) Tìm tọa độ giao điểm của (d1) và (d2). c) Tìm các giá trị của m để ba đường thẳng trên đồng quy tại một điểm. + Một người quan sát từ đỉnh của một ngọn Hải Đăng cao 350 m so với mực nước biển, nhìn thấy một chiếc thuyền bị nạn dưới góc 20° so với phương ngang của mực nước biển (như hình vẽ bên). Hỏi để đi theo phương ngang từ chân ngọn Hải Đăng đến cứu con thuyền cần đi quãng đường bao nhiêu mét? (Làm tròn kết quả đến chữ số thập phân thứ nhất). + Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AE đến đường tròn (O) (với E là tiếp điểm). Vẽ dây EM vuông góc với AO tại H. a) Cho biết bán kính R = 5cm, OH = 3cm. Tính độ dài dây EM. b) Chứng minh: AM là tiếp tuyến của đường tròn (O). Đường thẳng qua O vuông góc với OA cắt AM tại B. Từ B vẽ tiếp tuyến BF (F khác M) với đường tròn (O) (F là tiếp điểm). Chứng minh E, O, F thẳng hàng. c) Trên tia đối của tia BM lấy điểm I (I khác B), qua I vẽ tiếp tuyến thứ hai với đường tròn (O) cắt các đường thẳng BF, AE lần lượt tại C và D. Vẽ đường thẳng IF cắt AE tại Q. Chứng minh: AE = DQ.
Đề thi thử Toán vào lớp 10 năm 2024 - 2025 trường THCS Việt Ngọc - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 trường THCS Việt Ngọc, huyện Tân Yên, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 17 tháng 12 năm 2023; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận mã đề MÃ T001 MÃ T002 MÃ T003. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2024 – 2025 trường THCS Việt Ngọc – Bắc Giang : + Cho phương trình 2 x m xm 2 (1) 2 1 0 (x là ẩn, m là tham số) (1). Giải phương trình (1) với m = 1011. Tìm m để phương trình (1) có hai nghiệm thỏa mãn nghiệm này gấp hai lần nghiệm kia. + Để chuẩn bị tốt cho việc tham gia kỳ thi tuyển sinh vào lớp 10 trung học phổ thông, bạn Minh đến cửa hàng mua thêm 1 chiếc bút bi để làm bài tự luận và 1 chiếc bút chì để làm bài trắc nghiệm khách quan. Bạn Minh đã trả cho cửa hàng hết 30000 đồng. Hãy tính giá bán của mỗi chiếc bút trên, biết rằng tổng số tiền nếu mua 5 chiếc bút bi và 3 chiếc bút chì bằng tổng số tiền khi mua 2 chiếc bút bi và 5 chiếc bút chì. + Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O), đường cao AH (H BC). Trên đoạn thẳng AH lấy điểm D bất kỳ (D khác A và H). Gọi M và N theo thứ tự là hình chiếu vuông góc của D trên AB và AC. 1. Chứng minh tứ giác BMDH nội tiếp. 2. Chứng minh MN song song với tiếp tuyến tại A của đường tròn tâm O. 3. Đường thẳng AH cắt MN tại I. Chứng minh khi D di động trên AH thì tâm đường tròn ngoại tiếp tam giác BMI luôn thuộc một đường cố định.
Đề thi thử Toán vào lớp 10 năm 2024 trường THCS Hoằng Thanh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Hoằng Thanh, huyện Hoằng Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 17 tháng 12 năm 2023. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2024 trường THCS Hoằng Thanh – Thanh Hóa : + Cho hai đường thẳng (d1): y = –x + m + 2 và (d2): y = (m2 – 2)x + 3. Tìm m để (d1) và (d2) song song với nhau. + Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của CD, kẻ AH vuông góc với MO tại H. a) Tính OH.OM theo R. b) Chứng minh: Bốn điểm M, A, I, O cùng thuộc một đường tròn. c) Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R). + Cho ba số thực dương x, y, z thỏa mãn điều kiện x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức: P = 1 + 3/(xy + yz + xz).
Tuyển tập đề thi tuyển sinh lớp 10 môn Toán sở GDĐT Quảng Bình (2013 - 2024)
Tài liệu gồm 44 trang, được tổng hợp bởi thầy giáo Nguyễn Minh Hiếu, tuyển tập đề thi tuyển sinh vào lớp 10 môn Toán sở Giáo dục và Đào tạo tỉnh Quảng Bình (từ năm 2013 đến năm 2024), có đáp án và lời giải chi tiết. Mục lục : PHẦN I . ĐỀ THI 1. 1 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2023-2024 3. 2 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2022-2023 4. 3 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2021-2022 5. 4 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2020-2021 6. 5 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2017-2018 7. 6 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2016-2017 8. 7 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2015-2016 9. 8 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2014-2015 10. 9 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2013-2014 11. 10 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2012-2013 12. PHẦN II . LỜI GIẢI 13. 1 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2023-2024 15. 2 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2022-2023 17. 3 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2021-2022 19. 4 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2020-2021 22. 5 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2017-2018 25. 6 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2016-2017 28. 7 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2015-2016 31. 8 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2014-2015 34. 9 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2013-2014 37. 10 Đề thi tuyển sinh vào lớp 10 Quảng Bình năm học 2012-2013 39.