Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo học kỳ 1 Toán 7 năm 2022 - 2023 trường THCS Nguyễn Hiền - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề tham khảo kiểm tra cuối học kỳ 1 môn Toán 7 năm học 2022 – 2023 trường THCS Nguyễn Hiền, quận 7, thành phố Hồ Chí Minh; đề thi được biên soạn theo hình thức 30% trắc nghiệm kết hợp 70% tự luận, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án, hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn Đề tham khảo học kỳ 1 Toán 7 năm 2022 – 2023 trường THCS Nguyễn Hiền – TP HCM : + Một cửa hàng bán 500 m vải và bán hết trong 3 ngày. Ngày thứ nhất cửa hàng bán được 1 5 số vải. Ngày thứ hai cửa hàng bán được 3 8 số m vải còn lại. Tính tỉ số vải bán được của ngày thứ nhất và ngày thứ ba. + Một hồ bơi dạng hình hộp chữ nhật có kích thước trong lòng hồ là: Chiều dài 70 m, chiều rộng 30 m, chiều sâu 2m. a/ [TH – TL10] Tính thể tích của hồ bơi. b/ [VD – TL11] Tính diện tích cần lát gạch bên trong lòng hồ. + Quan sát lăng trụ đứng tứ giác FBCG.EADH ở hình bên. Cho biết mặt bên EABF là hình gì? A. Hình thoi. B. Hình thang cân. C. Hình chữ nhật. D. Hình bình hành.

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 7 năm học 2017 - 2018 phòng GD và ĐT thành phố Ninh Bình
Đề thi HK1 Toán 7 năm học 2017 – 2018 phòng GD và ĐT thành phố Ninh Bình gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 7 : Trong đợt thi đua hái hoa điểm tốt lập thành tích chào mừng kỉ niệm 35 năm ngày Nhà giáo Việt Nam (20/11/1982 – 20/11/2017), tỉ số số bông hoa điểm tốt của lớp 7A và lớp 7B là 5/6, đồng thời số bông hoa điểm tốt của lớp 7A ít hơn lớp 7B là 10 bông. Tính số bông hoa điểm tốt mỗi lớp đã hái được? [ads] Gọi số hoa điểm tốt của lớp 7A và lớp 7B lần lượt là x và y (bông; x, y thuộc N*) Theo bài ra ta có: x/y = 5/6 suy ra x/5 = y/6 Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: x/5 = y/6 = (x – y)/(5 – 6) = 10/1 = 10 Suy ra x = 50, y = 60 Vậy số hoa điểm tốt lớp 7A và lớp 7B hái được lần lượt là 50 bông và 60 bông.
Đề thi HK1 Toán 7 năm học 2017 - 2018 phòng GD và ĐT thành phố Thanh Hóa
Đề thi HK1 Toán 7 năm học 2017 – 2018 phòng GD và ĐT thành phố Thanh Hóa gồm 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi HK1 Toán 7 : + Cho tam giác ABCvuông tại A có AB = AC. Gọi K là trung điểm của BC. a) Chứng minh tam giác AKB và tam giác AKC bằng nhau b) Chứng minh AK ⊥ BC c) Từ C vẽ đường vuông góc với BC cắt AB tại E. Chứng minh EC//AK và tính số đo góc AEC? a) Xét tam giác AKB và tam giác AKC có: AB = AC (GT) KB = KC (GT) AK cạnh chung Suy ra hai tam giác AKB và AKC bằng nhau (c – c – c) b) Từ kết quả câu a, suy ra hai góc AKB và AKC bằng nhau (2 góc tương ứng) Mà góc AKB + góc AKC = 180 độ (2 góc kề bù) Suy ra góc AKB = góc AKC = 90 độ. Hay AK ⊥ BC [ads] c) Vì EC ⊥ BC (GT) và AK ⊥ BC (câu b) nên EC//AK Vì tam giác ABC vuông tại A nên góc CAB = 90 độ ΔABK = ΔACK (kết quả câu a) Suy ra góc BAK = góc CAK = 90 độ (Hai góc tương ứng) EC // AK Góc AEC = góc BAK (Hai góc đồng vị) Mà góc BAK = 45 độ Suy ra góc AEC = 45 độ Vậy góc AEC = 45 độ.
Đề thi HK1 Toán 7 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Tường - Vĩnh Phúc
Đề thi HK1 Toán 7 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Tường – Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi HK1 Toán 7 : + Cho tam giác ABC có AB = AC, M là trung điểm của BC. a) Chứng minh hai tam giác AMB và AMC bằng nhau b) Từ M kẻ ME vuông góc với AB (E thuộc AB), MF vuông góc với AC (F thuộc AC). Chứng minh AE = AF. c) Chứng minh: EF song song với BC. a) Vẽ hình, viết giả thiết và kết luận Xét tam giác AMB và tam giác AMC có: AB = AC (Theo giả thiết) AM là cạnh chung MB = MC (Theo giả thiết) Suy ra hai tam giác AMB và AMC bằng nhau (Theo trường hợp cạnh – cạnh – cạnh) [ads] b) Theo phần a) ta có hai tam giác AMB và AMC bằng nhau, suy ra hai góc MAB và MAC bằng nhau (2 góc tương ứng) Xét hai tam giác vuông EMA và FMA có: MA là cạnh chung Góc MAB và góc MAC bằng nhau (Chứng minh trên) Suy ra hai tam giác EMA và FMA bằng nhau (Theo trường hợp cạnh huyền – góc nhọn) hay (góc – cạnh – góc) Suy ra AE = AF (hai cạnh tương ứng) c) Theo chứng minh phần a) ta có hai tam giác AMB và AMC bằng nhau suy ra 2 góc AMB và AMC bằng nhau Mà hai góc này ở vị trí kề bù nên góc AMB + góc AMC = 180 độ. Suy ra: Góc AMB = góc AMC = 90 độ, suy ra AM ⊥ BC (1) Gọi N là giao điểm của AM và EF. Xét tam giác ANE và tam giác ANF có: AN là cạnh chung Góc NAE = góc NAF (hai góc tương ứng của hai tam giác bằng nhau AMB và AMC) AE = AF (theo chứng minh phần b) Suy ra hai tam giác ANE và ANF bằng nhau (Theo trường hợp cạnh – góc – cạnh) Suy ra góc ANE = góc ANF, mà hai góc này ở vị trí kề bù nên Góc ANE + góc ANF = 180 độ. Suy ra Góc ANE = Góc ANF = 90 độ, suy ra EF ⊥ AM (2) Từ (1) và (2) suy ra EF và BC song song với nhau (đpcm)
Đề thi HK1 Toán 7 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Bảo - Hải Phòng
Đề thi HK1 Toán 7 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Bảo – Hải Phòng gồm 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Cho tam giác ABC vuông tại A có góc B = 60 độ. Vẽ AH ⊥ BC tại H. a) Tính số đo góc HAB. b) Trên cạnh AC lấy điểm D sao cho AD = AH. Gọi I là trung điểm của cạnh HD. Chứng minh ∆AHI = ∆ADI. Từ đó suy ra AI ⊥ HD. c) Tia AI cắt cạnh HC tại điểm K. Chứng minh ∆AHK = ∆ADK từ đó suy ra AB // KD. d) Trên tia đối của tia HA lấy điểm E sao cho HE = AH. Chứng minh H là trung điểm của BK và ba điểm D, K, E thẳng hàng. [ads] + Một nhân viên văn phòng có thể đánh máy được 160 từ trong 2,5 phút. Hỏi cần bao nhiêu phút để người đó đánh được 800 từ ? (giả thiết rằng thời gian để đánh được các từ là như nhau). + Cho hàm số y = 3x a) Vẽ đồ thị hàm số trên. b) Điểm M(- 2; – 6) có thuộc đồ thị hàm số y = 3x? Vì sao?