Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề lũy thừa, mũ và lôgarit ôn thi THPT 2021 - Nguyễn Bảo Vương

Tài liệu gồm 583 trang, được biên soạn bởi thầy giáo Nguyễn Bảo Vương, phân dạng và tuyển chọn các bài tập trắc nghiệm (có đáp án và lời giải chi tiết) chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit, giúp học sinh rèn luyện khi học chương trình Giải tích 12 chương 2 và ôn thi tốt nghiệp THPT môn Toán năm học 2020 – 2021. CHUYÊN ĐỀ 1 . LŨY THỪA VÀ HÀM SỐ LŨY THỪA. DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (mức độ 5 – 6 điểm). + Dạng toán 1. Rút gọn, biến đổi, tính toán biểu thức lũy thừa. + Dạng toán 2. So sánh các biểu thức chứa lũy thừa. + Dạng toán 3. Tìm tập xác định của hàm số lũy thừa. + Dạng toán 4. Đạo hàm hàm số lũy thừa. + Dạng toán 5. Khảo sát hàm số lũy thừa. CHUYÊN ĐỀ 2 . CÔNG THỨC, BIẾN ĐỔI LOGARIT. DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (mức độ 5 – 6 điểm). + Dạng toán 1. Câu hỏi lý thuyết. + Dạng toán 2. Tính toán, rút gọn biểu thức chứa logarit. DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (mức độ 7 – 8 điểm). + Dạng toán 3. Biểu diễn biểu thức logarit này theo logarit khác. DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (mức độ 9 – 10 điểm). + Dạng toán 4. Một số bài toán nâng cao. CHUYÊN ĐỀ 3 . HÀM SỐ MŨ – HÀM SỐ LOGARIT. DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (mức độ 5 – 6 điểm). + Dạng toán 1. Tìm tập xác định hàm số mũ, hàm số logarit. + Dạng toán 2. Tìm đạo hàm hàm số mũ, hàm số logarit. + Dạng toán 3. Khảo sát hàm số mũ, hàm số logarit. DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (mức độ 7 – 8 điểm). + Dạng toán 4. Tìm tập xác định hàm số mũ, hàm số logarit. + Dạng toán 5. Tính đạo hàm hàm số mũ, hàm số logarit. + Dạng toán 6. Khảo sát hàm số mũ, hàm số logarit. + Dạng toán 7. Bài toán thực tế. DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (mức độ 9 – 10 điểm). + Dạng toán 8. Tính toán liên quan đến logarit dùng đẳng thức. + Dạng toán 9. Bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất mũ – loagrit (sử dụng phương pháp bất đẳng thức – biến đổi). + Dạng toán 10. Sử dụng phương pháp hàm số (hàm đặc trưng) giải các bài toán logarit. CHUYÊN ĐỀ 4 . PHƯƠNG TRÌNH MŨ – LOGARIT. DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (mức độ 5 – 6 điểm). + Dạng toán 1. Phương trình logarit. + + Dạng toán 1.1 Phương trình cơ bản. + + Dạng toán 1.2 Biến đổi đưa về phương trình cơ bản. + Dạng toán 2. Phương trình mũ. + + Dạng toán 2.1 Phương trình cơ bản. + + Dạng toán 2.2 Biến đổi đưa về phương trình cơ bản. DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (mức độ 7 – 8 điểm). + Dạng toán 3. Phương pháp giải phương trình logarit. + + Dạng toán 3.1 Phương pháp đưa về cùng cơ số. + + Dạng toán 3.2 Phương pháp đặt ẩn phụ. + + Dạng toán 3.3 Phương pháp mũ hóa. + + Dạng toán 3.4 Phương pháp hàm số, đánh giá. + Dạng toán 4. Phương pháp giải phương trình mũ. + + Dạng toán 4.1 Phương pháp đưa về cùng cơ số. + + Dạng toán 4.2 Phương pháp đặt ẩn phụ. + + Dạng toán 4.3 Phương pháp logarit hóa. + + Dạng toán 4.4 Phương pháp hàm số, đánh giá. + Dạng toán 5. Phương trình tổ hợp của mũ và logarit. DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (mức độ 9 – 10 điểm). + Dạng toán 6. Phương trình logarit chứa tham số. + Dạng toán 7. Phương trình mũ chứa tham số. + Dạng toán 8. Phương trình kết hợp của mũ và logarit chứa tham số. + Dạng toán 9. Phương trình mũ – logarit chứa nhiều ẩn. CHUYÊN ĐỀ 5 . BẤT PHƯƠNG TRÌNH MŨ – LOGARIT. DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (mức độ 5 – 6 điểm). + Dạng toán 1. Bất phương trình logarit. + Dạng toán 2. Bất phương trình mũ. DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (mức độ 7 – 8 điểm). + Dạng toán 3. Bất phương trình logarit. + Dạng toán 4. Bất phương trình mũ. DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (mức độ 9 – 10 điểm). + Dạng toán 5. Bất phương trình logarit chứa tham số. + Dạng toán 6. Bất phương trình mũ chứa tham số. + Dạng toán 7. Bất phương trình nhiều ẩn.

Nguồn: toanmath.com

Đọc Sách

Bài toán lãi suất và tăng trưởng
Tài liệu gồm 23 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán lãi suất và tăng trưởng, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. I. KIẾN THỨC TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI + Bài toán 1. Công thức lãi kép. + Bài toán 2. Công thức tăng trưởng dân số. + Bài toán 3. Hao mòn tài sản, diện tích rừng bị giảm. + Bài toán 4. Tăng trưởng của bèo, của vi khuẩn. + Bài toán 5. Tiền gửi tiết kiệm. + Bài toán 6. Trả góp hàng tháng. + Bài toán 7. Một số dạng toán khác. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Phương trình và bất phương trình mũ - logarit chứa tham số
Tài liệu gồm 34 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương trình và bất phương trình mũ – logarit chứa tham số, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. 1. Bài toán 1. Tìm tham số m để f(x;m) = 0 có nghiệm (hoặc có k nghiệm) trên miền D. 2. Bài toán 2. Tìm tham số m để f(x;m) ≥ 0 hoặc f(x;m) ≤ 0 có nghiệm trên D. 3. Một số phương pháp áp dụng trong bài toán. a. Phương pháp đặt ẩn phụ. b. Phương pháp hàm số. c. Dấu của tam thức bậc hai. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Toàn tập phương trình, bất phương trình, hệ phương trình mũ - logarit vận dụng cao
Tài liệu gồm 106 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tổng hợp toàn tập phương trình, bất phương trình, hệ phương trình mũ – logarit vận dụng cao (phiên bản năm 2021) nằm trong hệ thống bài tập trắc nghiệm chuyên đề lũy thừa, mũ và logarit lớp 12 THPT. Vận dụng cao, phân loại phương trình, bất phương trình, hệ mũ – logarit: + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p1. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p2. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p3. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p4. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p5. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p6. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p7. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p8. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p9. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p10. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p11. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p12. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p13. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p14. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p15. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p16. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p17. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p18. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p19. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p20. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p21. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p22. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p23. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p24. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p25. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p26. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p27. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p28. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p29. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p30. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p31. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p32. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p33. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p34. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p35. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p36. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p37. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p38. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p39. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p40. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p41. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p42. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p43. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p44. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p45. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p46. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p47. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p48. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p49. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p50. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p51. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p52. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p53. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p54. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p55.
Toàn tập cực trị mũ, logarit vận dụng cao
Tài liệu gồm 38 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tổng hợp toàn tập cực trị mũ, logarit vận dụng cao (phiên bản năm 2021) nằm trong hệ thống bài tập trắc nghiệm chuyên đề lũy thừa, mũ và logarit lớp 12 THPT. Vận dụng cao cực trị siêu việt (mũ, logarit). + Cực trị siêu việt p1. + Cực trị siêu việt p2. + Cực trị siêu việt p3. + Cực trị siêu việt p4. + Cực trị siêu việt p5. + Cực trị siêu việt p6. + Cực trị siêu việt p7. + Cực trị siêu việt p8. + Cực trị siêu việt p9. + Cực trị siêu việt p10. + Cực trị siêu việt p11. + Cực trị siêu việt p12. + Cực trị siêu việt p13. + Cực trị siêu việt p14. + Cực trị siêu việt p15. + Cực trị siêu việt p16. + Cực trị siêu việt p17. + Cực trị siêu việt p18. + Cực trị siêu việt p19.