Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa

Nội dung Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa Bản PDF - Nội dung bài viết Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa Trong kỳ thi giao lưu học sinh giỏi các môn văn hóa lớp 7 cấp huyện năm học 2020 - 2021 do phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa tổ chức vào Thứ Sáu ngày 09 tháng 04 năm 2021, đề thi HSG huyện Toán lớp 7 năm 2020 - 2021 của phòng GD&ĐT Hà Trung - Thanh Hóa đã được ra đề. Đề thi này gồm 01 trang với tổng cộng 06 bài toán dạng tự luận, dành cho thí sinh lớp 7. Thời gian làm bài thi được quy định là 150 phút, đủ để học sinh tự tin trả lời các câu hỏi. Trong đề thi HSG huyện Toán lớp 7 năm 2020 - 2021 của phòng GD&ĐT Hà Trung - Thanh Hóa, có một số bài toán khá thú vị như sau: + Bài toán 1: Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường thẳng vuông góc với tia phân giác của góc A, cắt tia này tại N, cắt tia AB tại E và cắt tia AC tại F. Yêu cầu chứng minh rằng: a) AE = AF. b) BE = CF. c) 2 AB = AC = AE. + Bài toán 2: Cho A nằm trong góc xOy nhọn. Hãy tìm điểm B, C lần lượt thuộc trục Ox, Oy sao cho chu vi của tam giác ABC là nhỏ nhất. + Bài toán 3: Tìm các số nguyên dương x, y, z thỏa mãn điều kiện x + y + z = xyz. Đây là những bài toán đòi hỏi sự tư duy logic và kiến thức Toán học sâu rộng của các thí sinh lớp 7. Chúc các em có một kỳ thi thành công và đạt kết quả tốt trong đề thi HSG huyện Toán năm 2020 - 2021!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Can Lộc - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi giao lưu học sinh giỏi cấp trường môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Can Lộc, tỉnh Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Can Lộc – Hà Tĩnh : + Cho tam giác ABC cân tại A, BH vuông góc với AC tại H. Trên cạnh BC lấy điểm M bất kỳ (khác B và C). Gọi D, E, F là chân đường vuông góc hạ từ M đến AB, AC, BH a) Chứng minh ∆DBM = ∆FMB b) Chứng minh MD + ME = BH c) Trên tia đối của tia CA lấy điểm K sao cho CK = EH. Gọi I là giao điểm BC với DK. Chứng minh DI = KI. + Có sáu túi lần lượt chứa 18, 19, 21, 23, 25 và 34 bóng. Một túi chỉ chứa bóng đỏ trong khi 5 túi kia chỉ chứa bóng xanh. Bạn Toán lấy ba túi, bạn Học lấy 2 túi. Túi còn lại chứa bóng đỏ. Biết lúc này bạn Toán có số bóng xanh gấp đôi số bóng xanh của học Học. Tìm số bóng đỏ trong túi còn lại. + Một hình hộp chữ nhật có chiều dài và chiều rộng lần lượt tỉ lệ với 3; 2. Biết chiều cao bằng 2cm và diện tích xung quanh bằng 40cm2. Tính thể tích của hình hộp chữ nhật trên. Cho biết 36 công nhân hoàn thành một công việc trong 15 ngày. Hỏi để hoàn thành công việc đó trong 9 ngày thì phải tăng cường thêm mấy công nhân? (Năng suất mỗi công nhân là như nhau).
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Hà Đông - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Hà Đông – Hà Nội : + Cho đa thức A(x) = ax3 + bx2 + cx + d với a là số nguyên dương, biết: A(5) – A(4) = 2022. Chứng minh A(7) – A(2) là hợp số. + Trong một đợt phát động thu kế hoạch nhỏ, ba khối 6, 7, 8 thu được 2125kg giấy vụn. Trung bình mỗi học sinh khối 6, 7, 8 theo thứ tự thu được 1,5kg; 2kg; 2,5kg. Số học sinh khối 6 và khối 7 tỉ lệ với 3 và 2, số học sinh khối 7 và khối 8 tỉ lệ với 5 và 4. Tính số học sinh mỗi khối. + Cho tam giác ABC có A < 90°. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ABM và MCN 1) Chứng minh rằng: AMC = ABN 2) Chứng minh: BN vuông góc CM 3) Kẻ AH vuông góc BC (H thuộc BC). Chứng minh AH đi qua trung điểm của MN.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT thành phố Vinh - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chất lượng học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT thành phố Vinh – Nghệ An : + Một bể nước dạng hình hộp chữ nhật có chiều dài, chiều rộng và chiều cao tỉ lệ với 1: 2: 4. Tổng diện tích sáu mặt của bể nước là 112m2. Tính thể tích bể nước. + Một bể bơi được xây dựng thành hai khu vực với độ sâu khác nhau cho trẻ em và người lớn và các kích thước của lòng bể được cho như hình vẽ. Hỏi sau bao lâu bể bơi được bơm đầy nước, biết cứ mỗi phút máy bơm được vào bể 500 lít nước. + Cho tam giác ABC nhọn có AB < AC. Trên tia đối của tia AB lấy điểm D sao cho AB = AD. Qua B kẻ đường thẳng song song với CD cắt đường thẳng AC tại E. a. Chứng minh rằng BE = CD; ED = BC. b. Gọi P, Q lần lượt là trung điểm của BE, CD. Chứng minh rằng A là trung điểm của PQ. c. Gọi M là điểm bất kỳ nằm trong tam giác ABC. Xác định vị trí của M để biểu thức MA.BC + MB.AC + MC.AB đạt giá trị nhỏ nhất.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Quảng Trạch - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm tra học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quảng Trạch, tỉnh Quảng Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Quảng Trạch – Quảng Bình : + Cho tam giác ABC cân tại A. Trên tia đối của các tia BC và CB lấy theo thứ tự hai điểm D và E sao cho DB = CE. Gọi M là trung điểm của BC, từ B và C kẻ BH và CK lần lượt vuông góc với AD và AE. Chứng minh: a) Tam giác ADE cân. b) AM là tia phân giác của góc DAE. c) BK = CH. d) Ba đường thẳng AM, BH, CK cùng đi qua một điểm. + Chứng minh rằng: nếu x và y là các số nguyên sao cho 2x + 3y chia hết cho 17 thì 9x + 5y chia hết cho 17. + Cho p là một số nguyên tố lớn hơn 3. Chứng minh (p – 1)(p + 1) chia hết cho 24. Tìm các giá trị nguyên của x để biểu thức C 4 7 2 x x có giá trị nguyên.