Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG Toán 8 năm 2018 - 2019 phòng GDĐT Chí Linh - Hải Dương

Đề giao lưu HSG Toán 8 năm 2018 – 2019 phòng GD&ĐT Chí Linh – Hải Dương được biên soạn theo hình thức tự luận với 05 bài toán, học sinh có 150 phút để làm bài thi, kỳ thi nhằm giao lưu đội tuyển học sinh giỏi Toán 8 của các trường THCS trên địa bàn thành phố Chí Linh, tỉnh Hải Dương. Trích dẫn đề giao lưu HSG Toán 8 năm 2018 – 2019 phòng GD&ĐT Chí Linh – Hải Dương : + Chứng minh rằng không tồn tại số nguyên n thỏa mãn: (2014^2014 + 1) chia hết cho n^3 + 2012n. + Cho hình vuông ABCD, M là một điểm nằm giữa B và C. Kẻ AN vuông góc với AM, AP vuông góc với MN (N và P thuộc đường thẳng CD). a) Chứng minh tam giác AMN vuông cân. b) Chứng minh rằng: AN^2 = NC.NP. c) Gọi Q là giao điểm của tia AM và tia DC. Chứng minh tổng 1/AM^2 + 1/AQ^2 không đổi khi điểm M thay đổi trên cạnh BC. + Cho các số x, y không âm thay đổi và thỏa mãn x + y = 1. Tìm giá trị lớn nhất của biểu thức:Q = (4x^2 + 3y)(4y^2 + 3x) + 25xy.

Nguồn: toanmath.com

Đọc Sách

Đề HSG Toán 8 cấp trường năm 2023 - 2024 trường THCS Yên Phong - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn đội tuyển học sinh giỏi môn Toán 8 cấp trường năm học 2023 – 2024 trường THCS Yên Phong, tỉnh Bắc Ninh. Trích dẫn Đề HSG Toán 8 cấp trường năm 2023 – 2024 trường THCS Yên Phong – Bắc Ninh : + Xét phép toán a*b = ab + ba với mọi số nguyên dương a b. Tìm số nguyên dương x nếu 2*x = 100. + Chứng minh rằng với mọi số tự nhiên n khác 0 thì số n2 + n + 1 không phải là số chính phương. + Cho hình bình hành ABCD (góc A khác 120°). Vẽ các tam giác đều ABE và ADF nằm ngoài hình bình hành đó. a) Chứng minh tam giác CEF làm tam giác đều. b) Gọi M, I, K theo thứ tự là trung điểm của BD, AF, AE. Tính góc IMK. 2. Cho tam giác ABC vuông tại A đường cao AH. Chứng minh rằng AB + AC < AH + BC.
Đề kiểm tra CLB Toán 8 năm 2023 - 2024 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra CLB Văn Hóa môn Toán 8 năm học 2023 – 2024 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 12 tháng 09 năm 2023; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề kiểm tra CLB Toán 8 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội : + Cho đa thức f x ax b với a b là các số nguyên và a ≠ 0. Biết giá trị của đa thức tại x = 1 và x = 3 tỉ lệ với 2 và −2. Chứng minh rằng b chia hết cho a. + Cho tam giác ABC vuông tại A AB AC đường cao AH H BC. Dựng HM AB tại M HN AC tại N. Gọi I là giao điểm của AH với MN. 1. Chứng minh rằng AMH HNA và IM IN. 2. Gọi O là trung điểm của BC, Q là giao điểm của HN và OA. Chứng minh rằng ANQ HMB và BQ MN. 3. Gọi J là giao điểm của BQ và AH. Chứng minh rằng BJO MNC. + Khi trên bảng ghi 2023 số tự nhiên 1 2 3 2023 cần xóa đi ít nhất bao nhiêu số để các số còn lại trên bảng có tính chất không có 3 số nào mà một trong 3 số đó bằng tích của 2 số còn lại.
Đề HSG Toán 8 cấp huyện năm 2022 - 2023 phòng GDĐT Đoan Hùng - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 THCS cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Đoan Hùng, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm + 60% tự luận, thời gian làm bài 120 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 8 cấp huyện năm 2022 – 2023 phòng GD&ĐT Đoan Hùng – Phú Thọ : + Cho hình vuông ABCD trên cạnh AB lấy điểm E, trên cạnh BC lấy điểm F sao cho AE BF. Kẻ DM vuông góc với EC tại M. a) Chứng minh rằng DM F thẳng hàng. b) Tìm số đo góc BMD khi AE BE. c) Khi E di chuyển trên AB và vẫn luôn thỏa mãn AE BF tìm vị trí của E để diện tích tam giác DEF là nhỏ nhất? + Một rô bốt chuyển động từ A đến B theo cách sau: đi được 5m dừng lại 1 giây, rồi đi tiếp 10m dừng lại 2 giây, rồi đi tiếp 15m dừng lại 3 giây. Cứ như vậy đi từ A đến B hết tất cả thời gian đi và dừng lại là 551 giây. Biết rằng rô bốt luôn chuyển động với vận tốc 2,5m/giây. Khoảng cách từ A đến B dài bao nhiêu mét? + Một hình chữ nhật có chu vi bằng 132m. Nếu tăng chiều dài thêm 8m và giảm chiều rộng đi 4m thì diện tích hình chữ nhật tăng thêm 2 52m. Chiều dài của hình chữ nhật là?
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Bình Lục - Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Bình Lục, tỉnh Hà Nam; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Bình Lục – Hà Nam : + Cho biểu thức A. a) Rút gọn biểu thức A. b) Tính giá trị của biểu thức A tại x thỏa mãn |x + 1| = |−1|. c) Tìm giá trị nguyên của x để biểu thức A có giá trị nguyên. + Cho hình vuông ABCD có độ dài cạnh bằng a, M là một điểm bất kì trên cạnh BC. Tia Ax vuông góc với AM cắt đường thẳng CD tại K. Gọi I là trung điểm của MK. Tia AI cắt đường thẳng CD tại E. Đường thẳng qua M song song với AB cắt AI tại N. a) Tứ giác MNKE là hình gì? Vì sao? b) Chứng minh AM2 = KC. KE. c) Chứng minh chu vi tam giác MEC không đổi khi M di động trên cạnh BC. d) Gọi F là giao điểm của AM với đường thẳng DC. Chứng minh 1/AF2 + 1/AM2 không phụ thuộc vào vị trí điểm M. + Hai vòi nước cùng chảy vào một bể không có nước sau 4 giờ thì đầy bể. Người ta mở 2 vòi chảy trong 2 giờ, sau đó tắt vòi 1 đi, vòi 2 chảy tiếp trong 3 giờ nữa thì bể đầy. Hỏi mỗi vòi chảy một mình trong bao lâu thì đầy bể.