Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 11 năm 2023 - 2024 cụm huyện Yên Dũng - Bắc Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi văn hóa môn Toán 11 năm học 2023 – 2024 cụm trường THPT huyện Yên Dũng, tỉnh Bắc Giang; đề thi có đáp án và hướng dẫn chấm điểm mã đề 107 108 109 110 111. Trích dẫn Đề thi HSG Toán 11 năm 2023 – 2024 cụm huyện Yên Dũng – Bắc Giang : + Một anh sinh viên T nhập học đại học vào tháng năm . Bắt đầu từ tháng năm 2023, cứ vào ngày mồng một hàng tháng anh vay ngân hàng triệu đồng với lãi suất cố định /tháng. Lãi tháng trước được cộng vào số nợ để tiếp tục tính lãi cho tháng tiếp theo (lãi kép). Vào ngày mồng một hàng tháng kể từ tháng năm 2025 về sau anh không vay ngân hàng nữa và anh còn trả được cho ngân hàng triệu đồng do việc làm thêm. Hỏi ngay sau khi kết thúc ngày anh ra trường anh còn nợ ngân hàng bao nhiêu tiền (làm tròn đến hàng nghìn đồng)? + Lớp 11A có 50 học sinh, trong đó có 30 học sinh thích học môn Toán, 28 học sinh thích học môn Văn và 6 học sinh không thích học cả Toán và Văn. Chọn ngẫu nhiên một học sinh từ lớp đó. Xác suất để học sinh được chọn chỉ thích học môn Toán mà không thích học môn Văn là? + Một rạp hát có 25 hàng ghế, mỗi hàng có 20 ghế. Trong một buổi biểu diễn ca nhạc, rạp hát đó đã bán được vừa hết số vé tương ứng với số ghế trong rạp hát. Tính số tiền thu được từ việc bán vé, biết rằng giá mỗi vé ở hàng ghế thứ nhất là 500000 đồng và giá vé của hàng ghế sau ít hơn giá vé ở hàng ghế liền trước 15000 đồng.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 11 năm 2023 - 2024 trường THPT Hậu Lộc 4 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 năm học 2023 – 2024 trường THPT Hậu Lộc 4, tỉnh Thanh Hóa. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với nội dung gồm 03 phần: Câu hỏi trắc nghiệm có nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Đề thi có đáp án và hướng dẫn chấm điểm mã đề 001 002 003 004. Trích dẫn Đề học sinh giỏi Toán 11 năm 2023 – 2024 trường THPT Hậu Lộc 4 – Thanh Hóa : + Khi gửi tiền trong ngân hàng, anh An gửi 500 triệu đồng theo hình thức lãi kép kì hạn 1 năm với lãi suất 5,6%/năm. Hỏi sau 3 năm người đó có bao nhiêu tiền cả gốc và lãi? (đơn vị: triệu đồng, kết quả làm tròn đến hàng phần trăm). + Mùa hè năm 2023, để chuẩn bị cho “học kì quân đội” dành cho các bạn nhỏ, một đơn vị bộ đội chuẩn bị thực phẩm cho các bạn nhỏ, dự kiến đủ dùng trong 45 ngày (năng suất ăn của mỗi ngày là như nhau). Nhưng bắt đầu từ ngày thứ 11, do số lượng thành viên tham gia tăng lên, nên lượng tiêu thụ thực phẩm tăng lên 10% mỗi ngày (ngày sau tăng 10% so với ngày trước đó). Hỏi thực tế lượng thức ăn đó đủ dùng cho bao nhiêu ngày? + Cho hình chóp S.ABCD có tất cả các cạnh đều bằng 8. Gọi M là trung điểm của cạnh SB và N là một điểm bất kỳ thuộc cạnh CD sao cho CN x (0 8). Mặt phẳng (α) chứa đường thẳng MN và song song đường thẳng AD cắt hình chóp S.ABCD theo một thiết diện có diện tích nhỏ nhất bằng c 2. Hỏi giá trị c bằng bao nhiêu?
Đề HSG Toán 11 năm 2023 - 2024 cụm trường THPT Gia Lâm Long Biên - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp cụm môn Toán 11 năm học 2023 – 2024 cụm trường THPT Gia Lâm & Long Biên, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 11 năm 2023 – 2024 cụm trường THPT Gia Lâm & Long Biên – Hà Nội : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Đường thẳng SA vuông góc với mặt phẳng ABCD SA a 2. 1) Tính góc giữa hai đường thẳng AD và SC. 2) Mặt phẳng đi qua A và vuông góc với SC cắt các cạnh SB SC SD lần lượt tại các điểm E F I. Chứng minh đường thẳng IE song song với đường thẳng BD. 3) Gọi H là giao điểm của hai đường thẳng AF và IE. Tính tỉ số AH AF.4) Gọi M là một điểm thay đổi trên cạnh CD M (khác C và D). Mặt phẳng qua M và vuông góc với CD cắt các cạnh SC SB lần lượt tại N và P. Tìm giá trị lớn nhất của diện tích tam giác MNP. + Cho phương trình sin cos 2 cos. 1) Giải phương trình đã cho. 2) Tính tổng các nghiệm của phương trình trong khoảng 0 20.
Đề Olimpic Toán 11 năm 2023 - 2024 cụm Thạch Thất Quốc Oai - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi Olimpic cấp cụm môn Toán 11 năm học 2023 – 2024 cụm Thạch Thất & Quốc Oai, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề Olimpic Toán 11 năm 2023 – 2024 cụm Thạch Thất & Quốc Oai – Hà Nội : + Cho hình chóp S.ABC có đáy là tam giác đều cạnh a SA SB SC đường cao SO của hình chóp S.ABC có độ dài bằng 2a. a) Chứng minh rằng SA BC. b) M là điểm thuộc đường cao AH của tam giác ABC (M khác A và H). Mặt phẳng P đi qua M và vuông góc với AH cắt hình chóp theo thiết diện. Tìm vị trí của M để diện tích thiết diện lớn nhất. + Cho các số 5 2 x y theo thứ tự lập thành cấp số cộng, các số theo thứ tự lập thành cấp số nhân. Tìm x y. + Gieo một con xúc sắc 4 lần. Tính xác suất để mặt 6 chấm xuất hiện ít nhất 1 lần.
Đề học sinh giỏi tỉnh Toán 11 chuyên đợt 2 năm 2023 - 2024 sở GDĐT Quảng Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh THPT môn Toán 11 chuyên đợt 2 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi tỉnh Toán 11 chuyên đợt 2 năm 2023 – 2024 sở GD&ĐT Quảng Nam : + Cho dãy số thực (un) xác định bởi 1 u với mọi n. Chứng minh dãy (un) có giới hạn hữu hạn và tính giới hạn đó. + Cho tam giác ABC nhọn (AB AC) và điểm D nằm trên đường trung tuyến AM kẻ từ đỉnh A của tam giác (D khác A). Gọi E là điểm trên đoạn MC (E khác M, C). Gọi H, K lần lượt là hình chiếu của D lên AB và AC. Gọi (C1) và (C2) lần lượt là hai đường tròn ngoại tiếp tam giác BHE và CKE, (C1) cắt (C2) tại điểm thứ hai là L. Gọi d là đường thẳng kẻ từ B vuông góc với BC, d cắt (C1) tại điểm thứ hai là I, N là giao điểm thứ hai của IL và (C2). a) Chứng minh BI song song NC. b) Gọi P là giao điểm của IL và BC. Chứng minh tứ giác ALMP nội tiếp đường tròn. + Cho đoạn thẳng AB được chia thành bốn phần bằng nhau bởi ba điểm M, N, P (hình vẽ). Ta đánh dấu 2024 điểm phân biệt trong đoạn AB bằng cách chia đều trong mỗi đoạn AM, MN, NP, PB có 506 điểm, thỏa mãn điều kiện với một điểm bất kỳ thuộc đoạn AM thì tồn tại một điểm thuộc đoạn MN đối xứng với nhau qua M; tương tự với một điểm bất kỳ thuộc đoạn PB thì tồn tại một điểm thuộc đoạn NP đối xứng với nhau qua P. Sau đó ta thực hiện tô màu đỏ cho 1012 điểm tùy ý và 1012 điểm còn lại màu đen. Chứng minh tổng các khoảng cách từ A đến các điểm màu đỏ bằng tổng các khoảng cách từ B đến các điểm màu đen.