Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Công phá kỹ thuật Casio - Nguyễn Ngọc Nam, Ngọc Huyền LB

giới thiệu đến bạn đọc bản PDF xem trước của cuốn sách Công phá kỹ thuật Casio – cuốn sách giúp em tự tin hơn khi học Toán lớp 10 – 11 – 12, sách gồm 496 trang được biên soạn bởi các tác giả Nguyễn Ngọc Nam và Ngọc Huyền LB. Nội dung chính trong sách Công phá kỹ thuật Casio: + Phần 1. Tổng quan về các tính năng trên máy tính cầm tay: Hệ thống lại toàn bộ tính năng, các phím chức năng một cách chi tiết, đầy đủ nhất về công dụng, cách sử dụng máy tính cầm tay, điều này khiến sách trở nên phù hợp với cả những học sinh chưa có các kỹ năng cơ bản về việc sử dụng máy tính Casio trong giải toán. [ads] + Phần 2. Các chủ đề Toán sử dụng máy tính cầm tay: Gồm 11 chủ đề được trình bày xuyên suốt từ lớp 10 đến lớp 12; gồm cả đại số, giải tích lẫn hình học, bao gồm: hàm số và các ứng dụng, hàm số lượng giác và phương trình lượng giác, tổ hợp – xác suất – nhị thức Newton, giới hạn, hàm số lũy thừa – hàm số mũ – hàm số logarit, nguyên hàm – tích phân – ứng dụng, số phức, phương trình – hệ phương trình – bất phương trình, phép biến hình trong mặt phẳng, phương pháp tọa độ trong mặt phẳng, phương pháp tọa độ trong không gian. Trong mỗi chủ đề là hệ thống các ví dụ, bài tập rèn luyện được giải chi tiết, trình bày một cách tỉ mỉ quy trình bấm máy tính kèm theo phân tích, nhận xét, lưu ý và mở rộng. + Ngoài ra, phần cuối sách cung cấp các kỹ thuật bổ trợ, công thức giải nhanh kèm ví dụ áp dụng và hướng dẫn, phân tích chi tiết.

Nguồn: toanmath.com

Đọc Sách

Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2
Tài liệu gồm 213 trang được sưu tầm và biên soạn bởi thầy giáo Ths. Nguyễn Chín Em, phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2. Với mỗi câu hỏi và bài toán trong đề thi, tài liệu bổ sung thêm nhiều câu hỏi và bài toán tương tự, có đáp án và lời giải chi tiết. 50 dạng toán phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2: + Dạng toán 1. Hoán vị – Chỉnh hợp – Tổ hợp. + Dạng toán 2. Cấp số cộng. + Dạng toán 3. Phương trình Mũ – Logarits (phương trình mũ). + Dạng toán 4. Thể tích khối đa diện (Khối lập phương). + Dạng toán 5. Hàm số Mũ – Hàm số Logarits (hàm số Logarits). + Dạng toán 6. Nguyên hàm – Tích phân(Nguyên hàm). + Dạng toán 7. Thể tích khối đa diện (Khối chóp). + Dạng toán 8. Khối Nón – Trụ – Cầu (Công thức thể tích khối Nón). + Dạng toán 9. Khối Nón – Trụ – Cầu (Diện tích mặt cầu). + Dạng toán 10. Tính đơn điệu hàm số (Tìm khoảng đơn điệu khi biết bảng biến thiên). + Dạng toán 11. Logarits (Rút gọn biểu thức Logarits đơn giản). + Dạng toán 12. Khối Nón – Trụ – Cầu (Công thức diện tích xung quanh của trụ). + Dạng toán 13. Cực trị của hàm số (Tìm điểm cực trị khi biết bảng biến thiên). + Dạng toán 14. Khảo sát và vẽ đồ thị hàm số (Tìm hàm số khi biết đồ thị). + Dạng toán 15. Tiệm cận (Tìm tiệm cận ngang của hàm số). + Dạng toán 16. Bất phương trình Mũ – Logarits (Giải bất phương trình Logarit). + Dạng toán 17. Sự tương giao đồ thị (Đếm số nghiệm của phương trình khi biết đồ thị). + Dạng toán 18. Nguyên hàm – Tích phân (Tính tích phân dựa vào tính chất tích phân). + Dạng toán 19. Số phức (Tìm số phức liên hợp). + Dạng toán 20. Số phức (Tìm phần thực của tổng của hai số phức). + Dạng toán 21. Số phức (Tìm điểm biểu diễn của số phức). + Dạng toán 22. Hệ Oxyz (Tìm tọa độ hình chiếu của điểm lên mặt phẳng tọa độ). + Dạng toán 23. Hệ Oxyz (Tìm tọa độ tâm mặt cầu). + Dạng toán 24. Phương trình mặt phẳng (Tìm tọa đọ véc tơ pháp tuyến). + Dạng toán 25. Phương trình đường thẳng (Tìm tọa độ điểm thuộc đường thẳng đã cho). [ads] + Dạng toán 26. Quan hệ vuông góc trong không gian (Tìm góc giữa đường thẳng và mặt phẳng). + Dạng toán 27. Cực trị của hàm số (Tìm số điểm cực trị khi biết bảng biến thiên). + Dạng toán 28. GTLN và GTNN (Tìm GTLN – GTNN của hàm số trên đoạn). + Dạng toán 29. Logarits (Biểu diễn các tham số trong biểu thức Logarits đơn giản). + Dạng toán 30. Khảo sát và vẽ đồ thị hàm số (Tìm số giao điểm của đồ thị hàm số và trục hoành). + Dạng toán 31. Bất phương trình Mũ – Logarits (Giải Bphương trình Mũ). + Dạng toán 32. Mặt Nón – Trụ – Cầu (Tính diện tích xung quanh hình nón ). + Dạng toán 33. Nguyên hàm – Tích phân (Nhận dạng tích phân khi đổi biến). + Dạng toán 34. Ứng dụng tích phân (Tính diện tích hình phẳng). + Dạng toán 35. Số phức (Tìm phần ảo của tích hai số phức). + Dạng toán 36. Số phức (Phương trình bậc hai với hệ số thực). + Dạng toán 37. Phương trình đường thẳng trong Oxyz (Tổng hợp liên quan đường thẳng và mặt phẳng). + Dạng toán 38. Phương trình đường thẳng trong Oxyz (Lập phương trình đồ thị qua hai điểm). + Dạng toán 39. Tổ hợp – Xác suất (Tính xác suất biến cố). + Dạng toán 40. Khoảng cách (Khoảng cách giữa hai đường thẳng chéo nhau). + Dạng toán 41. Tính đơn điệu của hàm số (Tìm m để hàm số đồng biến trên R). + Dạng toán 42. Hàm số Mũ – Hàm số Logarits (Bài toán thực tế). + Dạng toán 43. Khảo sát và vẽ đồ thị hàm số (Nhận dạng các hệ số của hàm phân thức khi biết bảng biến thiên). + Dạng toán 44. Khối Nón – Trụ – Cầu (Bài toán thực tế tính thể tích của khối trụ). + Dạng toán 45. Nguyên hàm – Tích Phân (Tính tích phân hàm ẩn). + Dạng toán 46. Khảo sát và vẽ đồ thị hàm số (Tìm số nghiệm của phương trình liên quan đến sinx khi biết bảng biến thiên). + Dạng toán 47. Hàm số Mũ – Logarits (Tìm GTLN – GTNN của biểu thức hai ẩn phụ thuộc vào biểu thức mũ – logarits). + Dạng toán 48. GTLN – GTNN (Tìm GTLN – GTNN của hàm phụ thuộc tham số trên đoạn). + Dạng toán 49. Thể tích khối đa diện (Thể tích khối đa diện cắt ra từ một khối khác). + Dạng toán 50. Phương trình Mũ – Logarits (Tìm số ẩn hoặc mối liên hệ giữa các ẩn trong phương trình Logarits chứa hai ẩn).
Phát triển đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020
Hiện nay, một số trường THPT trên cả nước đã bắt đầu cho học sinh trở lại trường, sau một khoảng thời gian rất dài phải nghỉ học do bệnh dịch. Và sắp tới là quãng thời gian các em phải “tăng tốc” để có thể hoàn thành chương trình của năm học, nhất là với các em học sinh khối 12, còn phải chuẩn bị cho kỳ thi THPT Quốc gia do Bộ Giáo dục và Đào tạo tổ chức. Nhằm giúp các em trong quá trình học tập, sưu tầm và giới thiệu đến các em tài liệu phát triển đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020, đây là một sản phẩm của tập thể quý thầy, cô giáo nhóm Geogebra – Nguyễn Chín Em. Tài liệu gồm có 218 trang, sáng tạo và phát triển một số câu hỏi và bài tập dựa trên cấu trúc đề minh họa THPTQG 2020 môn Toán, có đáp án và lời giải chi tiết. [ads] Trích dẫn tài liệu phát triển đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020: + Cho hàm số y = |8x^4 + ax2 + b|. Trong đó a, b là các hệ số thực. Tìm mối liên hệ giữa a và b để giá trị lớn nhất của hàm số đã cho trên đoạn [−1; 1] bằng 1? + Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên có ba chữ số đôi một khác nhau. Xác suất để chọn được số có chữ số hàng trăm, chữ số hàng đơn vị và tổng các chữ số theo thứ tự tạo thành 1 cấp số cộng có công sai dương. + Trong mặt phẳng tọa độ A, B, C là ba điểm biểu diễn lần lượt cho ba số phức z1 = 5 − i, z2 = (4 + i)^2 và z3 = (2i)^3. Diện tích của tam giác ABC là kết quả nào dưới đây?
Đề tham khảo THPTQG 2020 môn Toán và các bài toán phát triển theo chủ đề
Tài liệu gồm 105 trang được biên soạn bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC, tập trung khai thác và phát triển các câu hỏi và bài toán trong đề minh họa THPT Quốc gia 2020 môn Toán. Với mỗi bài toán, tài liệu trình bày lời giải chi tiết theo nhiều cách (nếu có), cùng với đó là một số câu hỏi và bài toán tương tự; qua đó giúp học sinh rèn luyện với những dạng toán bám sát, chất lượng. Tài liệu được chia thành hai phần dựa theo mức độ nhận thức: + Phần 1. Mức độ Nhận biết – Thông hiểu: Từ trang 1 đến trang 68. + Phần 2. Mức độ Vận dụng: Từ trang 69 đến trang 105. [ads] Trích dẫn đề tham khảo THPTQG 2020 môn Toán và các bài toán phát triển theo chủ đề: + Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng qua đỉnh của hình nón và cắt hình nón theo thiết diện là tam giác vuông có diện tích bằng 4. Góc giữa đường cao của hình nón và mặt phẳng thiết diện bằng 30◦. Thể tích của khối nón được giới hạn bởi hình nón đã cho bằng? + Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình f (sinx) = 3sinx + m có nghiệm thuộc khoảng (0;π). Tổng các phần tử của S bằng? + Trong không gian Oxyz, cho mặt cầu (S) : x2 + y2 + z2 − 4x − 2y + 2z − 3 = 0 và một điểm M (4; 2; −2). Mệnh đề nào sau đây là đúng? A. Điểm M là tâm của mặt cầu (S). B. Điểm M nằm trên mặt cầu (S). C. Điểm M nằm trong mặt cầu (S). D. Điểm M nằm ngoài mặt cầu (S).
Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán
Dựa trên đề thi tham khảo kỳ thi THPT Quốc gia năm 2020 môn Toán do Bộ Giáo dục và Đào tạo công bố, vừa qua, tập thể quý thầy, cô giáo nhóm Toán VD – VDC đã biên soạn bộ câu hỏi và bài tập phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán, nhằm giúp các em học sinh khối 12 có được tài liệu ôn tập bám sát, chất lượng để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2019 – 2020. Tài liệu phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán gồm có 42 trang, là sản phẩm đặc biệt của Tổ Phản Biện Các Sản Phẩm Quan Trọng Của Nhóm Toán VD – VDC. Với mỗi câu trong đề, tài liệu bổ sung thêm 3-5 câu hỏi và bài toán tương tự, có đáp án và lời giải chi tiết. Trích dẫn bộ đề phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán: + Định hướng xây dựng bài toán: Bài toán giữ nguyên ý tưởng câu 43 (sử dụng phương pháp đặt ẩn phụ) thay đổi cách đặt vấn đề và phương trình mũ thay cho phương trình logarit: “Tính tổng T các giá trị nguyên của tham số m để phương trình 3^x + (m^2 – m)3^-x = 2m có đúng hai nghiệm phân biệt nhỏ hơn 1/log3”. [ads] + Phát triển câu 32, sử dụng ứng dụng của tích vô hướng vào việc quỹ tích điểm M thỏa mãn đẳng thức cho trước, bài toán có sử dụng việc khai thác điểm trung gian: “Trong không gian Oxyz, cho A(2;0;4) và B(0;-6;0), M là một điểm bất kỳ thỏa mãn 3MA^2 + 2MB^2 = 561/280AB^2. Khi đó M thuộc mặt cầu có bán kính là giá trị nào dưới đây?” + Phát triển câu 50 thành bài toán tìm khoảng đồng biến và nghịch biến của hàm số chứa dấu giá trị tuyệt đối: “Cho hàm số đa thức f(x) có đạo hàm tràm trên R. Biết f(0) = 0 và đồ thị hàm số y = f'(x) như hình sau. Hàm số g(x) = |4f(x) + x^2| đồng biến trên khoảng nào dưới đây?”