Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập thể tích khối chóp có một mặt bên vuông góc với đáy

Khối chóp có một mặt bên vuông góc với đáy là dạng giả thiết được sử dụng rất nhiều trong các bài toán liên quan đến thể tích khối chóp, mặc dù ta chưa thấy được ngay đường cao của hình chóp nhưng có thể dễ dàng tìm được. Để giúp bạn đọc luyện tập với các bài toán có dạng hình này, giới thiệu đề bài và lời giải chi tiết của 69 bài tập thể tích khối chóp có một mặt bên vuông góc với đáy, các bài toán với nhiều biến dạng và độ khó khác nhau, thường gặp trong chương trình Hình học 12 và đề thi THPT Quốc gia môn Toán. Trích dẫn một số bài toán trong tài liệu bài tập thể tích khối chóp có một mặt bên vuông góc với đáy: + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, biết AB = AD = 2a, CD = a. Góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 60 độ. Gọi I là trung điểm của AD, biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Tính thể tích của khối chóp S.ABCD. + Cho tứ diện ABCD có ABC là tam giác vuông cân tại C và nằm trong mặt phẳng vuông góc với mặt phẳng (ABD), tam giác ABD là tam giác đều và có cạnh bằng 2a. Tính thể tích của khối tứ diện ABCD. [ads] + Cho hình chóp S.ABCD với đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên SC = a√15. Tam giác SAD là tam giác đều cạnh 2a và nằm trong mặt phẳng vuông góc với đáy hình chóp. Gọi H là trung điểm cạnh AD, khoảng cách từ B tới mặt phẳng (SHC) bằng 2a√6. Tính thể tích V của khối chóp S.ABCD? + Cho hình chóp có tam giác SAB đều cạnh a, tam giác ABC cân tại C. Hình chiếu của S lên (ABC) là trung điểm của cạnh AB, góc hợp bởi cạnh SC và mặt đáy là 30 độ. Thể tích khối chóp S.ABC tính theo a là? + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = 2a. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Biết AC vuông góc với SD. Tính thể tích V của khối chóp S.ABC.

Nguồn: toanmath.com

Đọc Sách

Tổng hợp bài tập trắc nghiệm thể tích, mặt cầu, mặt nón, mặt trụ - Nhóm Toán
Tài liệu gồm 27 trang với 75 bài toán trắc nghiệm thuộc chuyên đề thể tích khối đa diện và mặt cầu – mặt nón – mặt trụ có lời giải chi tiết. Các bài toán được chia thành 4 dạng, trong mỗi dạng bài tập được sắp xếp theo các mức độ nhận thức: nhận biết, thông hiểu, vận dụng thấp và vận dạng cao. + Dạng 1. Khái niệm khối đa diện + Dạng 2. Khối đa diện lồi và khối đa diện đều + Dạng 3. Thể tích khối đa diện + Dạng 4. Mặt nón, mặt trụ và mặt cầu Trích dẫn tài liệu : + Trong các mệnh đề sau đây, mệnh đề nào sai? A. Mặt trụ và mặt nón có chứa các đường thẳng B. Mọi hình chóp luôn nội tiếp trong mặt cầu C. Có vô số mặt phẳng cắt mặt cầu theo những đường tròn bằng nhau D. Luôn có hai đường tròn có bán kính khác nhau cùng nằm trên một mặt nón [ads] + Một công ty muốn thiết kế bao bì để đựng sữa với thể tích 1dm3. Bao bì được thiết kế bởi một trong hai mô hình sau: hình hộp chữ nhật có đáy là hình vuông hoặc dạng hình trụ và được sản xuất cùng một nguyên vật liệu. Hỏi thiết kế theo mô hình nào sẽ tiết kiệm được nguyên vật liệu nhất? Và thiết kế mô hình đó theo kích thước như thế nào? A. Hình trụ và chiều cao bằng bán kính đáy B. Hình trụ và chiều cao bằng đường kính đáy C. Hình hộp chữ nhật và cạnh bên gấp hai lần cạnh đáy D. Hình hộp chữ nhật và cạnh bên bằng cạnh đáy + Khẳng định nào dưới đây là khẳng định SAI? A. Quay đường tròn xung quanh một dây cung của nó luôn tạo ra một hình cầu B. Quay một tam giác nhọn xung quanh cạnh của nó không thể tạo ra hình nón C. Quay hình vuông xung quanh cạnh của nó luôn sinh ra hình trụ có r, h, l bằng nhau D. Quay tam giác đều quanh đường cao của nó luôn tạo ra một hình nón
Các dạng bài tập trắc nghiệm hình học không gian - Trần Duy Thúc
Tài liệu gồm 53 trang tuyển chọn các bài tập trắc nghiệm hình học không gian từ cơ bản đến nâng cao với đầy đủ các dạng toán điển hình. Lời giới thiệu của thầy (tác giả) Trần Duy Thúc : Chào các Em học sinh thân mến! Lúc đầu khi biết môn Toán sẽ chuyển sang thi dưới hình thức trắc nghiệm các bạn đồng nghiệp của cũng chia sẽ một vài lo âu rằng: “học trò sẽ hỏng hết tư duy, sẽ không biết trình bày, rồi học trò có đủ kiến thức để sau này vào các trường đại học tiếp tục học chăng … ”. Những trăn trở đó rõ ràng là xuất phát từ một tình yêu chân chính cho các học sinh thân yêu. Thật lòng lúc đầu Thầy cũng có những lo âu như vậy. Tuy nhiên, khi ngẫm lại ta thấy rằng. Khi thi trắc nghiệm học trò phải học nhiều hơn, nếu trước đó học một thì bây giờ phải học gấp 10 lần, gấp 100 lần. Để cung cấp cho các Em nguồn bài tập luyên tập Thầy gửi đến các Em quyển Các bài tập trắc nghiệm hình không gian. Tài liệu được chia thành 5 phần: [ads] + Phần 1. Các bài toán về thể tích khối chóp. + Phần 2. Các bài toán về thể tích khối lăng trụ + Phần 3. Các bài toán về khoảng cách + Phần 4. Các bài toán khác + Phần 5. Các bài toán tổng hợp Cuối cùng Thầy cũng không quên nói với các Em rằng mỗi quyển tài liệu điều mang trong nó những kiến thức bổ ít và dù đã cố gắng nhưng tài liệu cũng còn trong đó những sai sót nhất định. Rất mong nhận được ý kiến đóng góp chân thành từ các bạn đọc.
600 bài tập chọn lọc khối tròn xoay - Lê Minh Tâm
Tài liệu gồm 391 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tuyển chọn 600 bài tập trắc nghiệm chủ đề khối tròn xoay (mặt nón – mặt trụ – mặt cầu) trong chương trình môn Toán 12 phần Hình học chương 2, có đáp án và lời giải chi tiết. MỤC LỤC : PHẦN ĐỀ BÀI. + Chủ đề. KHỐI NÓN 2. + Chủ đề. KHỐI TRỤ 25. + Chủ đề. KHỐI CẦU 50. PHẦN ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI. + Chủ đề. KHỐI NÓN 2. + Chủ đề. KHỐI TRỤ 87. + Chủ đề. KHỐI CẦU 180.
Bài tập trắc nghiệm nón - trụ - cầu vận dụng cao
Tài liệu gồm 65 trang, tuyển chọn các bài tập trắc nghiệm nón – trụ – cầu vận dụng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12 phần Hình học chương 2: Mặt Nón – Mặt Trụ – Mặt Cầu. Phần 1. Thể tích và các yếu tố liên quan. Phần 2. Vật thể tròn xoay. Phần 3. Ứng dụng thực tiễn. Phần 4. Các khối NÓN – TRỤ – CẦU tiếp xúc. Phần 5. Mặt cầu ngoại tiếp khối đa diện. Phần 6. Bài toán cực trị.