Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 12 năm 2022 - 2023 lần 1 trường THPT Đông Sơn 1 - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng học sinh giỏi môn Toán 12 năm học 2022 – 2023 lần 1 trường THPT Đông Sơn 1, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 15 tháng 10 năm 2022. Trích dẫn Đề HSG Toán 12 năm 2022 – 2023 lần 1 trường THPT Đông Sơn 1 – Thanh Hóa : + Trong một lần dạo chơi, An vô tình lạc vào một mê cung là một đa giác lồi có 33 cạnh. Để thoát khỏi mê cung thì An phải đi đúng 2 lần với cùng quy luật sau: “Với L là tập hợp các tam giác tạo từ ba đỉnh của đa giác, từ hai tam giác bất kì trong L, An phải đi theo một tam giác có đúng một cạnh là cạnh của đa giác và một tam giác không có cạnh nào là cạnh của đa giác (không phân biệt thứ tự đi)”. Giả sử tất cả các lần đi của An đều đúng thì xác suất thoát khỏi mê cung của An xấp xỉ là bao nhiêu? + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AD a 2. Cạnh bên SA vuông góc với mặt đáy và SA a 2. Gọi M, N lần lượt là các điểm thỏa mãn hệ thức MS MD 2 và AN AB 2. Biết góc tạo bởi đường thẳng SN với mặt phẳng (SCD) bằng 30°. Khoảng cách giữa hai đường thẳng SN và CM bằng? + Cho khối hộp chữ nhật ABCD A B C D. Khoảng cách giữa 2 đường thẳng AB và BC′ bằng 2 5 5 a khoảng cách giữa 2 đường thẳng BC và AB′ bằng 2 5 5 a. Khoảng cách giữa 2 đường thẳng AC và BD′ bằng 33a. Thể tích khối hộp chữ nhật đã cho bằng?

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội dự tuyển QG môn Toán năm 2022 2023 trường chuyên Quốc học Huế
Nội dung Đề chọn đội dự tuyển QG môn Toán năm 2022 2023 trường chuyên Quốc học Huế Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội dự tuyển học sinh giỏi cấp Quốc gia môn Toán năm học 2022 – 2023 trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế. Trích dẫn Đề chọn đội dự tuyển QG môn Toán năm 2022 – 2023 trường chuyên Quốc học Huế : + Cho P(x) là một đa thức có hệ số thực, khác đa thức không, thỏa mãn (x – 1)P(x + 1) = (x + 2)P(x) với mọi x thuộc R và [P(22)]2 = P(23). Tìm đa thức P(x). + Cho A là một tập hữu hạn sao cho tồn tại dãy số (an) lấy giá trị trong A thỏa mãn tính chất: với mọi i, j thuộc N* sao cho |i – j| là số nguyên tố thì ai khác aj (ta quy ước số hạng đầu tiên của dãy số là a1). Tìm số phần tử ít nhất có thể của tập hợp A? + Cho tam giác ABC nội tiếp đường tròn (O), BC là dây cung cố định không đi qua O và A là điểm thay đổi trên cung lớn BC của (O) sao cho ABC là tam giác nhọn và AB > BC, AC > BC. Gọi P là điểm trên đoạn thẳng AB, Q là điểm trên đoạn thẳng AC sao cho P khác B, C khác Q và BQ = BC = CP. Gọi H là trực tâm của tam giác ABC và K là tâm đường tròn ngoại tiếp tam giác APQ. Chứng minh rằng khi A di động thì đường thẳng HK luôn đi qua một điểm cố định.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Đồng Nai
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Đồng Nai Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán bậc THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đồng Nai; kỳ thi được diễn ra vào ngày 23 tháng 09 năm 2022. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Đồng Nai : + Cho f(x) là một đa thức bậc 100, với các hệ số nguyên, trong đó hệ số cao nhất bằng 1. Hỏi f(x) có nhiều nhất là bao nhiêu nghiệm nằm trong khoảng (0;1)? + Chứng minh rằng với mọi số nguyên dương k, tồn tại số nguyên dương n để n^n + 2023 chia hết cho 2^k. + Cho các số nguyên dương m, n sao cho m là một số lẻ và n không chia hết cho 3. Chứng minh rằng bảng m x n không thể được phủ khít bằng cách sử dụng các hình vuông 2 x 2 và 3 x 3.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Hà Tĩnh
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Hà Tĩnh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán bậc THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra trong hai ngày: 22/09/2022 (vòng 1) và 23/09/2022 (vòng 2). Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Hà Tĩnh : + Cho trước a, b thuộc N* thỏa mãn a2 + b2 là tích của các số nguyên tố phân biệt và mỗi số nguyên tố đó đều có dạng 8k -3 với k thuộc N*. a) Giả sử tồn tại p = 8l – 3 (l thuộc N*) là một ước nguyên tố của a4 + b4. Chứng minh rằng p là ước của cả a và b. b) Tìm tất cả các cặp (m; n) với m,n thuộc Z mà am + bn và an – bm là các số chính phương. + Với mỗi cặp số nguyên dương (m; n), giả sử ban đầu có m + n hộp được đánh số từ 1 đến m + n, trong đó m hộp đầu tiên mỗi hộp chứa 1 bi đen và n hộp còn lại mỗi hộp chứa 1 bi trắng. Trong mỗi bước, ta được quyền chuyển một bi đen từ hộp i sang hộp i + 1 và một bi trắng từ hộp j sang hộp j – 1 với điều kiện i – j là một số chẵn. Ở đây giả sử rằng mỗi hộp đều đủ lớn để có thể chứa toàn bộ số bi. Cặp số (m; n) được gọi là tốt nếu sau hữu hạn bước chuyển thì n hộp đầu tiên mỗi hộp chứa 1 bi trắng và m hộp còn lại mỗi hộp chứa 1 bi đen. Nếu trái lại thì ta nói (m; n) là cặp xấu. 1) Chứng minh rằng cặp (1; 2021) là cặp xấu. b) Tìm số cặp số nguyên dương (m; n) tốt trong mỗi trường hợp một m + n = 2022 và m + n = 2023. + An và Bình đến cửa hàng mua kẹo. Trong cửa hàng có các túi kẹo loại 1 chiếc, 2 chiếc, 4 chiếc … 2^30 chiếc. Mỗi loại có nhiều túi. Mỗi bạn chọn mua một số túi ở nhiều loại và mỗi loại có thể mua nhiều túi. a) Số túi ít nhất An cần phải mua để có đúng 1000 chiếc kẹo là bao nhiêu? b) Có bao nhiêu cách chọn 5 túi kẹo đôi một khác loại sao cho tổng số chiếc kẹo được chọn không vượt quá 2023 và nếu túi loại 2^n được chọn (n thuộc N và n =< 29) thì túi loại 2^n+1 không được chọn? c) Giả sử sau khi mua, An và Bình lần lượt có n và n + 1 (n thuộc N và 0 =< n =< 2023) chiếc kẹo, đồng thời An có nhiều hơn Bình 7 túi kẹo. Có bao nhiêu giá trị n thỏa mãn các điều kiện trên, biết An và Bình luôn mua ít túi nhất có thể?
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Thái Nguyên
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Thái Nguyên Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia lớp 12 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thái Nguyên. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Thái Nguyên : + Cho x, y là các số nguyên dương lớn hơn 2 và A = y(4y + 5/x) – 1/y + x. Biết rằng A là một số nguyên dương. Chứng minh rằng A là số chính phương. + Cho a, b, c, m là các số nguyên dương và a, b, c không vượt quá n. Giả sử phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm phân biệt x1, x2 thoả mãn |x1 – x2| < 1/n. Chứng minh rằng nó có ít nhất hai ước số là số nguyên tố. + Cho tam giác nhọn không cân ABC, (I) là đường tròn nội tiếp. Gọi D, E, F theo thứ tự là tiếp điểm của (I) và  BC, CA, AB. Gọi A’, B’, C’ lần lượt là điểm đối xứng của A, B, C qua EF, FD, DE. K là trực tâm của tam giác DEF. a) Chứng minh rằng các tam giác DEF, A’B’C’ có diện tích bằng nhau. b) Giả sử ba đường thẳng DA’, EB’, FC’ đôi một cắt nhau tạo thành tam giác XYZ. Chứng minh rằng trực tâm của tam giác XYZ là trung điểm của KI.