Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 8 môn Toán cấp huyện năm 2015 2016 phòng GD ĐT Củ Chi TP HCM

Nội dung Đề thi học sinh giỏi lớp 8 môn Toán cấp huyện năm 2015 2016 phòng GD ĐT Củ Chi TP HCM Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 cấp huyện năm 2015 – 2016 phòng GD&ĐT Củ Chi – TP HCM Đề thi học sinh giỏi Toán lớp 8 cấp huyện năm 2015 – 2016 phòng GD&ĐT Củ Chi – TP HCM Sytu muốn gửi đến quý thầy cô và các em học sinh lớp 8 đề thi học sinh giỏi Toán lớp 8 cấp huyện năm 2015 – 2016 do phòng GD&ĐT Củ Chi – TP HCM tổ chức. Kỳ thi diễn ra vào ngày 04 tháng 04 năm 2016, đề thi bao gồm lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán lớp 8 cấp huyện năm 2015 – 2016 phòng GD&ĐT Củ Chi – TP HCM: + Trong tam giác nhọn ABC, các đường cao AA’, BB’, CC’, H là trực tâm. Câu hỏi đặt ra là tính tổng các đường cao. Bài toán sau đó yêu cầu chứng minh một phép toán liên quan đến phân giác của tam giác. + Đề thi còn đề cập đến việc tìm giá trị của biểu thức A dựa trên một số điều kiện cụ thể như xác định, giá trị bằng 0, hay giá trị nguyên. Học sinh cần phân tích đa thức thành nhân tử để giải quyết câu hỏi đó. Với nội dung đề thi đa dạng và phong phú như vậy, học sinh sẽ được thử thách và khám phá nhiều kỹ năng Toán học khác nhau, từ tính tổng đến phân tích đa thức. Hy vọng rằng đề thi này sẽ giúp học sinh rèn luyện và nâng cao kiến thức của mình trong môn Toán.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2022 - 2023 phòng GDĐT Tiên Du - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Tiên Du, tỉnh Bắc Ninh; đề thi hình thức 100% tự luận, thời gian 120 phút (không kể thời gian giao đề), đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào ngày 22 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Tiên Du – Bắc Ninh : + Cho hình chữ nhật ABCD (AB > 2BC), trên cạnh AB lấy điểm M sao cho BC = AM, trên tia CB lấy điểm N sao cho CN = BM, CM cắt AN tại P, trên cạnh CD lấy điểm E sao cho CE = CB. 1) Chứng minh tứ giác AMCE là hình bình hành. 2) Chứng minh các tam giác ADE và ECN bằng nhau. 3) Đường thẳng qua A vuông góc với AE cắt đường thẳng qua N vuông góc với NE tại điểm F. Chứng minh tứ giác AENF là hình vuông. 4) Gọi K là giao điểm của EN với PC, L là giao điểm của EF với AN. Tính tỉ số diện tích của hai tam giác NKL và NEP. + Thí sinh lựa chọn làm một (chỉ một) câu trong hai câu sau: 1) Chứng minh rằng nếu 2n (với n N) là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương. 2) Tìm giá trị nhỏ nhất và giá trị lớn nhất của 2 6 2 3 1 x A x. + Cho biểu thức 3 3 3 3 3 A 1 2 3 … 2022 2023. Tìm số dư khi chia số A cho 3.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Sầm Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp thành phố môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Sầm Sơn, tỉnh Thanh Hóa.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Hoằng Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Hoằng Hóa, tỉnh Thanh Hóa. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Hoằng Hóa – Thanh Hóa : + Cho biểu thức: A. Rút gọn biểu thức A. Tính giá trị biểu thức A khi x thỏa mãn: x3 − 2×2 − 5x + 6 = 0. Cho a, b, c là ba số đôi một không đối nhau thỏa mãn: ab + bc + ca = 5. Tính giá trị của biểu thức: P. + Tìm các cặp số nguyên (x;y) thỏa mãn: x2 + xy = 2022x + 2023y + 2024. Cho x, y là các số nguyên sao cho x2 − 2xy − y2 và xy − 2y2 − x đều chia hết cho 5. Chứng minh rằng 2×2 + y2 + 2x + y cũng chia hết cho 5. + Cho hình vuông ABCD. Gọi E, K lần lượt là trung điểm của AB và CD; O là giao điểm của AK và DE. Hạ DM vuông góc CE. 1. Chứng minh tứ giác ADKE là hình chữ nhật, từ đó suy ra AM vuông góc KM. 2. Gọi N là giao điểm của AK và BM. Chứng minh ADM cân và tính số đo của góc ANB. 3. Phân giác góc DCE cắt cạnh AD tại F. Chứng minh rằng CF ≤ 2EF.
Đề Olympic Toán 8 đợt 1 năm 2022 - 2023 phòng GDĐT Ứng Hòa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 đợt 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội. Trích dẫn Đề Olympic Toán 8 đợt 1 năm 2022 – 2023 phòng GD&ĐT Ứng Hòa – Hà Nội : + Tìm số dư trong phép chia biểu thức (x + 2)(x + 4)(x + 6)(x + 8) + 2023 cho đa thức x2 + 10x + 21. + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Trong nửa mặt phẳng bờ là đường cao AH có chứa điểm C, vẽ hình vuông AHKE. Gọi P là giao điểm của AC và KE. 1) Chứng minh tam giác ABP vuông cân. 2) Gọi Q là điểm thứ tư của hình bình hành APQB, I là giao điểm của BP và AQ. Chứng minh ba điểm H, I, E thẳng hàng. 3)Tứ giác HEKQ là hình gì? Vì sao? + Hình vuông có 3 x 3 ô vuông như hình vẽ, chứa 9 số mà tổng các số ở mỗi hàng, mỗi cột, mỗi đường chéo bằng nhau được gọi là hình vuông kỳ diệu. Chứng minh rằng số ở tâm (x) của một hình vuông kỳ diệu bằng trung bình cộng của hai số còn lại cùng hàng, cùng cột hoặc cùng đường chéo.