Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra cuối học kì 1 (HK1) lớp 6 môn Toán năm 2020 2021 phòng GD ĐT Quận 2 TP HCM

Nội dung Đề kiểm tra cuối học kì 1 (HK1) lớp 6 môn Toán năm 2020 2021 phòng GD ĐT Quận 2 TP HCM Bản PDF - Nội dung bài viết Đề kiểm tra cuối học kì 1 (HK1) lớp 6 môn Toán năm 2020 2021 phòng GD ĐT Quận 2 TP HCM Đề kiểm tra cuối học kì 1 (HK1) lớp 6 môn Toán năm 2020 2021 phòng GD ĐT Quận 2 TP HCM Đề kiểm tra cuối học kì 1 môn Toán lớp 6 năm 2020 - 2021 tại phòng GD&ĐT Quận 2, thành phố Hồ Chí Minh được thiết kế theo dạng tự luận, bao gồm 01 trang với 06 bài toán. Thời gian làm bài thi là 90 phút. Bên dưới là một số câu hỏi được trích dẫn từ đề kiểm tra cuối học kì 1 môn Toán lớp 6 năm 2020 - 2021 phòng GD&ĐT Quận 2 - TP HCM: + Liên đội trường THCS đã tổ chức vận động học sinh quyên góp tập trắng để giúp đỡ các bạn học sinh miền Trung gặp khó khăn sau lũ lụt. Tính số cuốn tập trắng cần quyên góp, biết rằng số tập trắng từ 320 đến 400, mỗi xấp 18 cuốn, mỗi xấp 30 cuốn hoặc mỗi xấp 40 cuốn đều còn dư 5 cuốn. + Trên tia Ox, hai điểm A và B được chọn sao cho OA = 3cm và OB = 6cm. Hỏi độ dài đoạn thẳng AB là bao nhiêu? Điểm A có phải trung điểm của đoạn OB không? Vì sao? Tìm điểm C trên tia đối của tia Ox sao cho BC = 10cm, sau đó tính độ dài của đoạn thẳng OM với M là trung điểm của BC. + Nam muốn mua 20 quyển tập giá 8.500 đồng/quyển và 1 hộp bút giá 60.000 đồng. Mỗi ngày Nam tiết kiệm được 10.000 đồng. Nam cần tiết kiệm trong bao nhiêu ngày để có thể mua được 20 quyển tập và 1 hộp bút?

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 6 năm học 2017 - 2018 phòng GD và ĐT thành phố Ninh Bình
Đề thi HK1 Toán 6 năm học 2017 – 2018 phòng GD và ĐT thành phố Ninh Bình gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút (không kể thời gian giao đề), đề thi nhằm khảo sát chất lượng Toán 6 của học sinh tại thành phố Ninh Bình, đề có đáp án . Trích dẫn đề thi HK1 Toán 6 : Trên tia Ox vẽ hai điểm M và N sao cho OM = 3 cm, ON = 9 cm. a) Tính độ dài đoạn thẳng MN? b) Vẽ điểm A là trung điểm của đoạn thẳng MN. Tính độ dài đoạn thẳng MA? c) Điểm M có là trung điểm của đoạn thẳng OA hay không? Vì sao? a) Trên tia Ox có OM = 3cm; ON = 9 cm. Nên OM < ON (Vì OM=3 cm <ON= 9 cm) Suy ra điểm M nằm giữa hai điểm O và N. ⇒ OM + MN = ON. Mà OM = 3cm ; ON = 9 cm ⇒ 3 + MN = 9 ⇒ MN = 6 (cm) Vậy MN = 6cm b) Vì A là trung điểm của đoạn thẳng MN nên: MA = AN = MN/2 = 6/2 = 3cm Vậy MA = 3cm [ads] c)Trên tia NO có NO = 9cm; NA = 3 cm nên NA < NO (Vì 3 cm < 9 cm) Suy ra điểm A nằm giữa hai điểm O và N. ⇒ OA + NA = ON. Mà NA = 3cm; ON = 9 cm ⇒ OA + 3 = 9 ⇒ OA = 6 (cm) Trên tia Ox có OM = 3cm; OA = 6 cm. Nên OM < OA (Vì 3 cm < 6 cm) Suy ra điểm M nằm giữa hai điểm O và A (1) Lại có OM = MA (= 3cm) (2) Từ (1) và (2) suy ra điểm M là trung điểm của đoạn thẳng OA.
Đề thi HK1 Toán 6 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Tường - Vĩnh Phúc
Đề thi HK1 Toán 6 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Tường – Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho đoạn thẳng AB có độ dài 7cm. Cho hai điểm M và N cùng nằm giữa hai điểm A và B. Biết độ dài các đoạn thẳng AM = 3cm và BN = 2cm. a) Tính độ dài đoạn thẳng AN. b) Chứng tỏ điểm M nằm giữa hai điểm A và N. c) Chứng tỏ điểm N là trung điểm của đoạn thẳng BM. Trên tia AB ta có AM < AN < AB (vì 3cm < 5cm < 7cm) nên điểm N nằm giữa hai điểm M và B. Vì M nằm giữa hai điểm A và N nên ta có: AM + MN = AN 3 + MN = 5 MN = 2 (cm) Ta có N nằm giữa hai điểm M và B, MN = NB =2cm Do đó N là trung điểm của đoạn thẳng MB [ads] + Tìm các số nguyên a, b thỏa mãn: |a| + |b+1| < 2 Với a, b thuộc Z, ta có: |a| ≥ 0; |b + 1| ≥ 0 Kết hợp với bài cho |a| + |b + 1| < 2 suy ra 0 ≤ |a| + |b + 1| < 2 Từ đó, ta có: |a| + |b + 1| = 0 hoặc |a| + |b + 1| = 1 Nếu |a| + |b + 1| = 0 thì |a| = 0 và |b + 1| = 0 hay a = 0 và b = -1 Nếu |a| + |b + 1| =1. Khi đó: 0 ≤ |a| ≤ 1 suy ra |a| = 0 hoặc |a| = 1 Với |a| = 0 hay a = 0 thì |b + 1| = 1 hay b = 0 hoặc b = -2 Với |a| = 1 hay a = 1 hoặc a = -1 thì |b + 1| = 0 hay b = -1 Vậy các số nguyên a, b cần tìm là a = 0 và b = -1 a = 0 và b = -2 a =1 và b = -1 a = -1 và b = -1 a = 0 và b = 0 Bạn đọc có thể xem thêm một số đề thi HK1 Toán 6 sau: + Đề thi học kỳ 1 Toán 6 năm học 2017 – 2018 phòng GD và ĐT thành phố Hải Phòng + Đề thi HK1 Toán 6 năm học 2017 – 2018 trường THCS Vân Hội – Yên Bái
Đề thi học kỳ 1 Toán 6 năm học 2017 - 2018 phòng GD và ĐT thành phố Hải Phòng
Đề thi học kỳ 1 Toán 6 năm học 2017 – 2018 phòng GD và ĐT thành phố Hải Phòng gồm 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Khối 6 của một trường THCS có số học sinh khoảng từ 200 đến 300. Trong lần đi giã ngoại, nếu chia số học sinh này thành các nhóm có cùng sở thích, mỗi nhóm có 30 em, 40 em, 48 em thì vừa đủ. Tính số học sinh khối 6 của trường. [ads] + Trên tia Ox, lấy hai điểm M, N sao cho OM = 2 cm, ON = 8 cm. a) Tính độ dài đoạn thẳng MN. b) Trên tia đối của tia NM, lấy một điểm P sao cho NP = 6 cm. Chứng tỏ điểm N là trung điểm của đoạn thẳng MP. + Cho bốn đường thẳng phân biệt xx’; yy’; zz’ và tt’ cắt nhau tại O. Lấy 4 điểm, 5 điểm, 6 điểm, 7 điểm phân biệt khác điểm O lần lượt thuộc bốn đường thẳng trên. Sao cho trong 3 điểm bất kỳ, mỗi điểm thuộc một đường thẳng khác nhau đều không thẳng hàng. Trên hình vẽ có bao nhiêu tia? Qua hai điểm vẽ được một đường thẳng, hỏi có thể vẽ được tất cả bao nhiêu đường thẳng?
Đề thi HK1 Toán 6 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Bảo - Hải Phòng
Đề thi HK1 Toán 6 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Bảo – Hải Phòng gồm 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Cho bốn đường thẳng phân biệt xx’; yy’; zz’ và tt’ cắt nhau tại O. Lấy 4 điểm, 5 điểm, 6 điểm, 7 điểm phân biệt khác điểm O lần lượt thuộc bốn đường thẳng trên. Sao cho trong 3 điểm bất kỳ, mỗi điểm thuộc một đường thẳng khác nhau đều không thẳng hàng. Trên hình vẽ có bao nhiêu tia? Qua hai điểm vẽ được một đường thẳng, hỏi có thể vẽ được tất cả bao nhiêu đường thẳng? [ads] + Khối 6 của một trường THCS có số học sinh khoảng từ 200 đến 300. Trong lần đi giã ngoại, nếu chia số học sinh này thành các nhóm có cùng sở thích, mỗi nhóm có 30 em, 40 em, 48 em thì vừa đủ. Tính số học sinh khối 6 của trường. + Trên tia Ox, lấy hai điểm M, N sao cho OM = 2 cm, ON = 8 cm. a) Tính độ dài đoạn thẳng MN. b) Trên tia đối của tia NM, lấy một điểm P sao cho NP = 6 cm. Chứng tỏ điểm N là trung điểm của đoạn thẳng MP.