Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm tích phân có đáp án và lời giải

Tài liệu gồm 163 trang tuyển chọn và phân dạng các bài tập trắc nghiệm tích phân có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Giải tích 12 chương 3 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu bài tập trắc nghiệm tích phân có đáp án và lời giải: Vấn đề 1 . Tích phân. Phần 1 . Câu hỏi và bài toán trắc nghiệm. + Dạng toán 1. Tính tích phân bằng cách áp dụng định nghĩa, tính chất và bảng nguyên hàm (Trang 1). + Dạng toán 2. Tích phân hàm phân thức hữu tỉ (Trang 9). + Dạng toán 3. Tích phân hàm chứa dấu căn thức (Trang 14). + Dạng toán 4. Tích phân hàm số lượng giác (Trang 15). + Dạng toán 5. Tích phân hàm số mũ và hàm số logarit (Trang 18). Phần 2 . Lời giải chi tiết. + Dạng toán 1. Tính tích phân bằng cách áp dụng định nghĩa, tính chất và bảng nguyên hàm (Trang 20). + Dạng toán 2. Tích phân hàm phân thức hữu tỉ (Trang 35). + Dạng toán 3. Tích phân hàm chứa dấu căn thức (Trang 48). + Dạng toán 4. Tích phân hàm số lượng giác (Trang 50). + Dạng toán 5. Tích phân hàm số mũ và hàm số logarit (Trang 58). Vấn đề 2 . Tích phân đổi biến số. Phần 1 . Câu hỏi và bài toán trắc nghiệm. + Dạng toán 1. Phương pháp tích phân đổi biến số dạng 1: hàm đa thức, hàm hữu tỉ, hàm vô tỉ, hàm lượng giác, hàm số mũ, hàm số logarit (Trang 62). + Dạng toán 2. Phương pháp tích phân đổi biến số dạng 2: dạng √(a^2 – x^2), dạng √(x^2 – a^2), dạng √(x^2 + a^2), dạng √((a + x)/(a – x)), dạng √((a – x)/(a + x)) (Trang 76). [ads] Phần 2 . Lời giải chi tiết. + Dạng toán 1. Phương pháp tích phân đổi biến số dạng 1: hàm đa thức, hàm hữu tỉ, hàm vô tỉ, hàm lượng giác, hàm số mũ, hàm số logarit (Trang 79). + Dạng toán 2. Phương pháp tích phân đổi biến số dạng 2: dạng √(a^2 – x^2), dạng √(x^2 – a^2), dạng √(x^2 + a^2), dạng √((a + x)/(a – x)), dạng √((a – x)/(a + x)) (Trang 123). Vấn đề 3 . Tích phân từng phần. Phần 1 . Câu hỏi và bài toán trắc nghiệm. + Dạng toán 1. Tích phân P(x).e^x (Trang 131). + Dạng toán 2. Tích phân P(x).sinx hoặc P(x).cosx (Trang 133). + Dạng toán 3. Tích phân P(x).lnx (Trang 134). Phần 2 . Lời giải chi tiết. + Dạng toán 1. Tích phân P(x).e^x (Trang 138). + Dạng toán 2. Tích phân P(x).sinx hoặc P(x).cosx (Trang 148). + Dạng toán 3. Tích phân P(x).lnx (Trang 151).

Nguồn: toanmath.com

Đọc Sách

Bài tập nguyên hàm dành cho học sinh trung bình - yếu
Tài liệu gồm 74 trang, tổng hợp bài tập trắc nghiệm nguyên hàm mức độ nhận biết – thông hiểu (NB – TH), có đáp án và lời giải chi tiết, phù hợp với đối tượng học sinh trung bình – yếu trong quá trình học tập chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng). Dạng toán 1: Sử dụng nguyên hàm cơ bản (Trang 1). Dạng toán 2: Nguyên hàm có điều kiện (Trang 6). Dạng toán 3: Phương pháp đổi biến số (Trang 10). Dạng toán 4: Phương pháp từng phần (Trang 14).
Các dạng bài tập VDC nguyên hàm, tích phân và ứng dụng
Tài liệu gồm 138 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) nguyên hàm, tích phân và ứng dụng, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 3 và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC nguyên hàm, tích phân và ứng dụng: CHỦ ĐỀ 1 . NGUYÊN HÀM VÀ MỘT SỐ PHƯƠNG PHÁP TÌM NGUYÊN HÀM. Dạng 1: Tìm nguyên hàm bằng các phép biến đổi sơ cấp. Dạng 2: Phương pháp đổi biến dạng 1, đặt u = u(x). Dạng 3: Tìm nguyên hàm bằng cách đổi biến dạng 2. Dạng 4: Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần. Dạng 5: Các bài toán thực tế ứng dụng nguyên hàm. CHỦ ĐỀ 2 . TÍCH PHÂN VÀ MỘT SỐ PHƯƠNG PHÁP TÍNH TÍCH PHÂN. Dạng 1: Tính tích phân bằng cách sử dụng định nghĩa, tính chất. Dạng 2: Tính tích phân bằng phương pháp đổi biến. Dạng 3: Tính tích phân bằng phương pháp tích phân từng phần. Dạng 4: Tích phân chứa dấu giá trị tuyệt đối. Dạng 5: Tính tích phân các hàm đặc biệt, hàm ẩn. Dạng 6: Bất đẳng thức tích phân. CHỦ ĐỀ 3 . ỨNG DỤNG CỦA TÍCH PHÂN. Dạng 1: Tính diện tích giới hạn bởi một đồ thị. Dạng 2: Tính diện tích giới hạn bởi hai đồ thị. Dạng 3: Tính thể tích vật thể tròn xoay dựa vào định nghĩa. Dạng 4: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi một đồ thị. Dạng 5: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi hai đồ thị. Dạng 6: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi nhiều đồ thị. Dạng 7: Một số bài toán thực tế ứng dụng tích phân. Dạng 8: Bài toán thực tế. Dạng 9: Các bài toán bản chất đặt sắc của tích phân.
Các dạng bài tập VDC ứng dụng của tích phân
Tài liệu gồm 55 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) ứng dụng của tích phân, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC ứng dụng của tích phân: A. KIẾN THỨC SÁCH GIÁO KHOA CẦN NẮM 1. Diện tích hình phẳng. 2. Thể tích của khối tròn xoay. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1: Tính diện tích giới hạn bởi một đồ thị. Dạng 2: Tính diện tích giới hạn bởi hai đồ thị. Dạng 3: Tính thể tích vật thể tròn xoay dựa vào định nghĩa. Dạng 4: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi một đồ thị. Dạng 5: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi hai đồ thị. Dạng 6: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi nhiều đồ thị. Dạng 7: Một số bài toán thực tế ứng dụng tích phân. Dạng 8: Bài toán thực tế. Dạng 9: Các bài toán bản chất đặt sắc của tích phân.
Các dạng bài tập VDC tích phân và một số phương pháp tính tích phân
Tài liệu gồm 52 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) tích phân và một số phương pháp tính tích phân, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC tích phân và một số phương pháp tính tích phân: A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Định nghĩa và tính chất của tích phân. 2. Các phương pháp tính tích phân. 3. Tích phân các hàm số đặc biệt. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1: Tính tích phân bằng cách sử dụng định nghĩa, tính chất. Dạng 2: Tính tích phân bằng phương pháp đổi biến. Dạng 3: Tính tích phân bằng phương pháp tích phân từng phần. Dạng 4: Tích phân chứa dấu giá trị tuyệt đối. Dạng 5: Tính tích phân các hàm đặc biệt, hàm ẩn. Dạng 6: Bất đẳng thức tích phân.