Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nghiên cứu định lý Viète và ứng dụng - Nguyễn Thành Nhân

Tài liệu gồm 56 trang, được biên soạn bởi tác giả Nguyễn Thành Nhân, khai thác chuyên sâu định lý Viète và ứng dụng. A. LỊCH SỬ. B. ĐỊNH LÝ VIÈTE. Trong toán học, định lý Viète hay công thức Viète (có khi viết theo phiên âm tiếng Việt là Vi-ét), do nhà toán học Pháp François Viète tìm ra, nêu lên mối quan hệ giữa các nghiệm của một phương trình đa thức (trong trường số phức) và các hệ số của nó. I. Định lý Viète cho phương trình bậc hai. II. Định lý Viète cho phương trình đa thức bất kỳ. C. MỘT SỐ TIPS GIẢI NHANH CÁC BÀI TOÁN ỨNG DỤNG ĐỊNH LÝ VIÈTE. I. Dấu nghiệm của phương trình bậc hai. II. Một số đẳng thức cần lưu ý. III. Ứng dụng đa thức đối xứng để giải quyết các bài tập áp dụng định lý Viète. D. MỘT SỐ ỨNG DỤNG CỦA ĐỊNH LÝ VIÈTE. I. Một số ứng dụng. Dạng 1. Tìm hai số khi biết tổng và tích. Dạng 2. Tính giá trị biểu thức đối xứng. Dạng 3. Tìm điều kiện của tham số để hai nghiệm liên hệ với nhau bởi một hệ thức cho trước. Dạng 4. Tìm hệ thức liên hệ giữa các nghiệm độc lập với tham số. Dạng 5. Thiết lập phương trình bậc hai. Dạng 6. Xét dấu các nghiệm. Dạng 7. Giải hệ phương trình đối xứng loại 1. Dạng 8. Chứng minh bất đẳng thức. Dạng 9. Ứng dụng trong bài toán cực trị. Dạng 10. Ứng dụng trong bài toán tiếp tuyến. Dạng 11. Ứng dụng hệ thức truy hồi. Dạng 12. Ứng dụng tính các biểu thức lượng giác. Dạng 13. So sánh nghiệm. Dạng 14. Ứng dụng khác. II. Bài tập áp dụng.

Nguồn: toanmath.com

Đọc Sách

Hệ phương trình chứa căn sử dụng liên hợp
Tiếp theo Lý thuyết giải hệ phương trình chứa căn các phần 1, phần 2 và phần 3 do tác giả Giang Sơn biên soạn, tài liệu dưới đây chủ yếu giới thiệu đến quý bạn đọc Lý thuyết giải hệ phương trình chứa căn phần 2 ở cấp độ cao hơn, trình bày chi tiết các thí dụ điển hình về hệ giải được nhờ sử dụng tổng hợp các phép thế, phép cộng đại số, đại lựợng liên hợp và phép đặt ẩn phụ. Đây là nội dung có mức độ khó tương đối, đòi hỏi các bạn độc giả cần có kiến thức vững chắc về các phép giải phương trình chứa căn, kỹ năng biến đổi đại số và tư duy chiều sâu bất đẳng thức. Tài liệu phù hợp với học sinh khối lớp 10 học chuyên sâu chủ đề phương trình và hệ phương trình (Đại số 10 chương 3), học sinh ôn thi học sinh giỏi môn Toán.
Một số định hướng giải phương trình vô tỉ
Tài liệu gồm có 81 trang được biên soạn bởi thầy giáo Nguyễn Xuân Chung, hướng dẫn một số phương pháp tiếp cận và giải phương trình vô tỉ (phương trình chứa căn thức), giúp học sinh khối 10 học chuyên sâu chương trình Đại số 10 chương 3: phương trình và hệ phương trình. * Một số định hướng giải phương trình vô tỉ (Phần 1). + Giải phương trình đa thức bậc 4. 1. Sơ lược cách giải. 2. Bài luyện tập. 3. Xét trường hợp vô nghiệm. + Giải một số phương trình vô tỉ chứa căn bậc hai. * Một số định hướng giải phương trình vô tỉ (Phần 2). + Giải một số phương trình vô tỉ chứa căn bậc ba. 1. Cơ sở và định hướng giải. 2. Các ví dụ giải toán. 3. Hỗ trợ Casio trong giải toán. 4. Một số bài toán khác. 5. Luyện tập. * Một số định hướng giải phương trình vô tỉ (Phần 3). + Định hướng khái quát giải một lớp bài toán. 1. Đặt vấn đề. 2. Các ví dụ giải toán. 3. Luyện tập. * Một số định hướng giải phương trình vô tỉ (Phần 4). + Giải phương trình theo phương pháp trục căn thức và bình phương. 1. Đặt vấn đề. 2. Phương pháp nhẩm nghiệm hữu tỉ và trục căn. a. Nhẩm nghiệm hữu tỉ. b. Định hướng trục căn thức. c. Trường hợp hai nghiệm hữu tỉ. d. Luyện tập. * Một số định hướng giải phương trình vô tỉ (Phần 5). + Giải phương trình theo phương pháp trục căn thức và bình phương. Trường hợp nghiệm vô tỉ. a. Nhận xét và ví dụ. b. Luyện tập.
Phương pháp giải phương trình, bất phương trình, hệ phương trình vô tỉ
Tài liệu gồm có 109 trang được tổng hợp bởi thầy Trần Mạnh Tường hướng dẫn phương pháp giải phương trình, bất phương trình, hệ phương trình vô tỉ (cách gọi khác: phương trình, bất phương trình, hệ phương trình chứa căn; viết tắt: PT – HPT – BPT vô tỉ, PT – HPT – BPT chứa căn), đây là dạng toán điển hình trong chương trình Đại số 10 chương 3 (phương trình và hệ phương trình) và Đại số 10 chương 4 (bất đẳng thức và bất phương trình); tài liệu được phân dạng dựa theo các phương pháp giải toán; các bài toán trong tài liệu được phân tích và giải chi tiết. Khái quát nội dung tài liệu phương pháp giải phương trình, bất phương trình, hệ phương trình vô tỉ: I. Phương trình vô tỉ giải bằng phương pháp biến đổi tương đương. II. Phương trình vô tỉ thêm bớt thành hằng đẳng thức. III. Phương trình vô tỉ sử dụng phương pháp đặt ẩn phụ. 1. Đặt ẩn phụ hoàn toàn. 2. Đặt ẩn phụ không hoàn toàn. 3. Đặt ẩn phụ đưa về phương trình tích. 4. Đặt ẩn phụ đưa về hệ. [ads] IV. Phương trình vô tỉ nhân liên hợp. 1. Phương trình vô tỉ nhân liên hợp trực tiếp các biểu thức có sẵn trong phương trình. 2. Phương trình vô tỉ nhân liên hợp thêm bớt hằng số. 3. Phương trình vô tỉ nhân liên hợp thêm bớt biểu thức bậc nhất. V. Phương trình vô tỉ giải bằng phương pháp vectơ. VI. Phương trình vô tỉ đưa về dạng f(u) = f(v). VII. Phương trình vô tỉ sử dụng bất đẳng thức để đánh giá. VIII. Phương trình vô tỉ sử dụng bất đẳng thức Bunhiacopxki. IX. Phương trình vô tỉ sử dụng bất đẳng thức Cosi. X. Phương trình vô tỉ sử dụng tính đơn điệu của hàm số. XI. Phương trình vô tỉ sử dụng sự tương giao của đường tròn đường thẳng. XII. Phương trình vô tỉ sử dụng phương pháp lượng giác hóa. XI. Phương trình vô tỉ có tham số. XIV. Trắc nghiệm phương trình vô tỉ.
Chuyên đề phương trình và hệ phương trình - Nguyễn Chín Em
Tài liệu gồm 307 trang được biên soạn bởi thầy Nguyễn Chín Em, hướng dẫn giải các dạng toán phương trình và hệ phương trình thường gặp trong chương trình Đại số 10 chương 3; trong mỗi chủ đề, tài liệu tổng hợp lý thuyết cần nắm, phân dạng toán và chọn lọc các bài tập tự luận – trắc nghiệm tiêu biểu, có đáp án và lời giải chi tiết. Khái quát nội dung tài liệu chuyên đề phương trình và hệ phương trình – Nguyễn Chín Em: CHỦ ĐỀ 1 . ĐẠI CƯƠNG VỀ PHƯƠNG TRÌNH. I. KIẾN THỨC CƠ BẢN A Khái niệm phương trình. B Phương trình tương đương. 1 Phương trình tương đương. 2 Phép biến đổi tương đương. 3 Phương trình hệ quả. C Phương trình nhiều ẩn. D Phương trình chứa tham số. II. CÁC DẠNG BÀI TẬP Dạng 1. Tìm điều kiện xác định của phương trình. Dạng 2. Phương trình tương đương, phương trình hệ quả. Dạng 3. Giải phương trình có điều kiện. E Bài tập trắc nghiệm. [ads] CHỦ ĐỀ 2 . PHƯƠNG TRÌNH QUY VỀ BẬC NHẤT VÀ PHƯƠNG TRÌNH BẬC HAI. A Giải và biện luận phương trình bậc nhất. B Giải và biện luận phương trình bậc hai. 1 Giải và biện luận phương trình bậc hai. 2 Định lý Vi-ét – định lý Vi-ét đảo. C Phương trình chứa ẩn trong giá trị tuyệt đối, phương trình chứa ẩn trong dấu căn. D Các dạng bài tập thường gặp. 1 Phương trình cơ bản. 2 Phương pháp bình phương hai vế. 3 Phương pháp đặt ẩn phụ. 4 Phương pháp nhân lượng liên hợp. E Hệ thống bài tập tự luận. Dạng 1. Một số phương trình cơ bản. Dạng 2. Phương pháp bình phương hai vế. Dạng 3. Phương pháp đặt ẩn phụ. Dạng 4. Phương pháp nhân lượng liên hợp. Dạng 5. Bài toán chứa tham số. Dạng 6. Phương trình bậc nhất, bậc hai chứa tham số. Dạng 7. Tìm điều kiện tham số để phương trình có nghiệm thỏa mãn điều kiện cho trước. Dạng 8. Phương trình trùng phương. Dạng 9. Dùng định nghĩa, tính chất của giá trị tuyệt đối và phương pháp bình phương hai vế. Dạng 10. Giải phương trình chứa dấu giá trị tuyệt đối bằng cách đặt ẩn phụ. Dạng 11. Giải phương trình chứa dấu giá trị tuyệt đối có tham số. Dạng 12. Phương pháp nâng lên lũy thừa. Dạng 13. Phương pháp dùng hằng đẳng thức. Dạng 14. Đặt ẩn phụ. Dạng 15. Đặt ẩn phụ không hoàn toàn. Dạng 16. Đặt một ẩn phụ chuyển về hệ phương trình. Dạng 17. Đặt hai ẩn phụ. Dạng 18. Đặt hai ẩn phụ chuyển về giải một phương trình hai ẩn. Dạng 19. Phương pháp nhân liên hợp. Dạng 20. Phương pháp biến đổi thành phương trình tích. Dạng 21. Phương pháp đánh giá hai vế. F Bài tập trắc nghiệm. CHỦ ĐỀ 3 . PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH BẬC NHẤT NHIỀU ẨN. Dạng 1. Phương trình bậc nhất hai ẩn. Dạng 2. Hệ phương trình bậc nhất hai ẩn; hệ phương trình bậc nhất ba ẩn (không chứa tham số). Dạng 3. Hệ phương trình bậc nhất hai ẩn có tham số. A Bài tập trắc nghiệm. B Hệ phương trình đối xứng. Dạng 4. Hệ phương trình đối xứng loại I. Dạng 5. Hệ phương trình đối xứng loại II. C Hệ đẳng cập bậc hai. Chuyên đề 1 : Giải hệ phương trình bằng phương pháp thế. Dạng 6. Phương pháp thế ẩn. Dạng 7. Phương pháp thế biểu thức. Dạng 8. Phương pháp thế số. Chuyên đề 2 : Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Dạng 9. Đặt ẩn phụ dạng đại số. Dạng 10. Đặt ẩn phụ dạng tổng – hiệu. Dạng 11. Đặt ẩn phụ trong hệ có căn. Dạng 12. Sử dụng hình giải tích. Chuyên đề 3 : Cách nhận dạng hệ giải bằng phương pháp nhân liên hợp. Dạng 13. Nhân liên hợp trực tiếp hai căn có sẵn trong phương trình. Dạng 14. Thêm bớt hằng số để nhân liên hợp. Dạng 15. Thêm bớt một biểu thức để nhân liên hợp.