Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Thừa Thiên Huế

Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Thừa Thiên Huế Bản PDF - Nội dung bài viết Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GD ĐT Thừa Thiên Huế Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GD ĐT Thừa Thiên Huế Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 - 2023 sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế. Kỳ thi diễn ra vào thứ Năm ngày 09 tháng 06 năm 2022, đề thi bao gồm đáp án và lời giải chi tiết. Trích đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GD&ĐT Thừa Thiên Huế: 1. Hưởng ứng chiến dịch tình nguyện “Mùa hè xanh”, hai tổ thanh niên A và B tham gia sửa đoạn đường. Khi làm cùng nhau, họ hoàn thành việc trong 8 giờ. Nếu làm riêng, thời gian hoàn thành của tổ A ít hơn tổ B 12 giờ. Hỏi mỗi tổ sửa đoạn đường đó trong bao lâu khi làm riêng? 2. Cho tam giác ABC có ba góc nhọn, AB < AC và nội tiếp đường tròn (O). Gọi BE, CF lần lượt là các đường cao và H là trực tâm của tam giác ABC. a) Chứng minh AEHF là tứ giác nội tiếp. b) Đường tròn ngoại tiếp tứ giác AEHF cắt đường tròn (O) tại điểm I. Chứng minh hai tam giác IBC và IFE đồng dạng. c) Hai đường thẳng BC và EF cắt nhau tại K. Chứng minh A, I, K thẳng hàng. 3. Nhấn chìm hoàn toàn viên bi sắt vào cốc thủy tinh hình trụ, nước trong cốc dâng lên 2cm mà không tràn ra ngoài cốc. Biết đường kính đáy cốc là 6cm. Tính thể tích của viên bi.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hải Dương
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hải Dương Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán sở GD và ĐT Hải Dương năm học 2017-2018 Đề thi tuyển sinh THPT môn Toán sở GD và ĐT Hải Dương năm học 2017-2018 Đề thi tuyển sinh lớp 10 THPT năm học 2017-2018 môn Toán sở GD và ĐT Hải Dương bao gồm 5 bài toán tự luận, được kèm theo lời giải chi tiết. Dưới đây là mô tả một số bài toán trong đề: 1. Trong tháng đầu, hai tổ sản xuất được 900 chi tiết máy. Tháng thứ hai, sau khi cải tiến kỹ thuật, tổ I vượt mức 10% và tổ II vượt mức 12% so với tháng đầu, tổng sản lượng đạt 1000 chi tiết máy. Hãy tính số chi tiết mỗi tổ sản xuất trong tháng đầu. 2. Cho đường tròn tâm O, bán kính R. Từ một điểm M ngoài đường tròn, kẻ hai tiếp tuyến MA và MB (A, B là tiếp điểm). Kế tiếp, qua A kẻ đường thẳng song song với MO cắt đường tròn tại E (E khác A), đường thẳng ME cắt đường tròn tại F (F khác E), đường thẳng AF cắt MO tại N, H là giao điểm của MO và AB. Phân tích và giải quyết các yêu cầu sau: 1) Chứng minh: Tứ giác MAOB nội tiếp đường tròn. 2) Chứng minh: \(MN^2 = NF \times NA\) và \(MN = NH\). 3) Chứng minh: \(\frac{HB^2}{HF^2} - \frac{EF}{MF} = 1\). Mỗi bài toán đều đòi hỏi sự logic, kiến thức và kỹ năng phân tích từ học sinh để có thể giải quyết. Đề thi này không chỉ đánh giá kiến thức mà còn khuyến khích học sinh tư duy sáng tạo và khám phá trong quá trình giải quyết bài toán.
Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Quốc học TT Huế
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Quốc học TT Huế Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học TT Huế Đề thi tuyển sinh năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học TT Huế Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - Thừa Thiên Huế bao gồm 5 bài toán tự luận, với lời giải chi tiết để giúp học sinh hiểu rõ về từng bước giải. Một trong những bài toán trong đề là: Cho đường tròn (O) có tâm O và hai điểm C, D trên (O) sao cho ba điểm C, O, D không thẳng hàng. Gọi Ct là tia đối của tia CD, M là điểm tùy ý trên Ct, M khác C. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm, B thuộc cung nhỏ CD). Gọi I là trung điểm của CD, H là giao điểm của đường thẳng MO và đường thẳng AB. a) Chứng minh tứ giác MAIB là tứ giác nội tiếp. b) Chứng minh đường thẳng AB luôn đi qua một điểm cố định khi M di chuyển trên tia Ct. Bằng cách phân tích và áp dụng kiến thức Toán học, học sinh sẽ có cơ hội rèn luyện kỹ năng tư duy logic, giải quyết vấn đề và phát triển khả năng suy luận.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Thừa Thiên Huế
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Thừa Thiên Huế Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Thừa Thiên Huế Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Thừa Thiên Huế Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Thừa Thiên Huế gồm 6 bài toán tự luận, đi kèm lời giải chi tiết. Trong đề thi, có một bài toán thú vị: Đề cho hai vòi nước cùng chảy vào một bể không có nước, sau 5 giờ đầy bể. Nếu chỉ mở vòi thứ nhất trong 2 giờ rồi đóng lại, sau đó mở vòi thứ hai trong 1 giờ, ta được 1/4 bể nước. Bài toán đặt ra câu hỏi: nếu mở riêng từng vòi thì thời gian để mỗi vòi chảy đầy bể là bao nhiêu? Để giải bài toán trên, ta cần sử dụng kiến thức về tỉ lệ cộng và động học. Qua việc phân tích và tính toán, ta sẽ xác định được thời gian mà mỗi vòi nước cần để chảy đầy bể. Bên cạnh đó, đề cũng có bài toán khác liên quan đến tam giác và hình trụ. Bài toán đưa ra các điều kiện và yêu cầu chứng minh một số tính chất của các hình học, đòi hỏi sự tỉ mỉ, logic và khéo léo trong suy luận. Đề thi tuyển sinh năm nay không chỉ đánh giá kiến thức mà còn khẳng định khả năng tư duy, sáng tạo và khả năng giải quyết vấn đề của thí sinh. Hy vọng bài thi sẽ giúp học sinh rèn luyện kỹ năng toán học và phát triển tư duy logic của mình.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Đà Nẵng
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Đà Nẵng Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Đà Nẵng Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Đà Nẵng Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Đà Nẵng gồm 5 bài toán tự luận. Trong đề thi này, có một số bài toán thú vị như sau: + Một đội xe cần vận chuyển 160 tấn gạo với khối lượng mỗi xe chở bằng nhau. Ban đầu, khi sắp khởi hành, đội xe đã được bổ sung thêm 4 xe nữa. Khi đó, mỗi xe chở ít hơn 2 tấn gạo so với dự định ban đầu. Hỏi đội xe ban đầu có bao nhiêu chiếc? + Cho nửa đường tròn có tâm O, đường kính AB và C là một điểm nằm trên nửa đường tròn (C khác A, B). Trên cung AC, lấy điểm D (D khác A và C). Gọi H là hình chiếu vuông góc của C xuống đường AB và E là điểm giao của BD và CH. a) Chứng minh rằng tứ giác ADEH là tứ giác nội tiếp. b) Chứng minh rằng góc ACO = góc HCB và AB.AC = AC.AH + CB.CH. c) Trên đoạn OC, lấy điểm M sao cho OM = CH. Chứng minh rằng khi C thay đổi trên nửa đường tròn đã cho thì M chạy trên một đường tròn cố định. Đề thi này đòi hỏi sự khéo léo và logic trong việc giải các bài toán, giúp học sinh rèn luyện tư duy logic và kỹ năng giải quyết vấn đề.