Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập viết phương trình đường thẳng trong không gian - Nguyễn Thị Thu

Tài liệu gồm 19 trang hướng dẫn giải các dạng toán viết phương trình đường thẳng trong không gian. Trong chương trình Hình học 12, bài toán viết phương trình đường thẳng trong không gian là bài toán hay và không quá khó. Để làm tốt bài toán này đòi hỏi học sinh phải nắm vững kiến thức hình học không gian, mối quan hệ giữa đường thẳng, mặt phẳng và mặt cầu. Là dạng toán chiếm tỷ lệ nhiều trong các đề thi tốt nghiệp THPT và thi vào Cao đẳng, Đại học nên yêu cầu học sinh phải làm tốt được dạng toán này là hết sức cần thiết. Trong quá trình giảng dạy, tôi nhận thấy các em còn lúng túng nhiều trong quá trình giải các bài toán về viết phương trình đường thẳng. Nhằm giúp các em giảm bớt khó khăn khi gặp dạng toán này tôi đã mạnh dạn đưa ra chuyên đề : “Phân loại các dạng bài tập viết về phương trình đường thẳng trong không gian”. Trong chuyên đề, tôi đã đưa ra phân loại bài tập viết phương trình đường thẳng từ dễ đến khó để học sinh tiếp cận một cách đơn giản, dễ nhớ và từng bước giúp học sinh hình thành tư duy tự học, tự giải quyết vấn đề. Ngoài ra, giúp cho các em làm tốt các bài thi tốt nghiệp cũng như thi vào các trường Cao đẳng và Đại học. Chuyên đề gồm 3 phần: + Phần I: Phương pháp chung để giải toán + Phần II: Một số dạng toán thường gặp + Phần III: Bài tập tự luận tự luyện + Phần IV: Bài tập trắc nghiệm tự luyện [ads] Các dạng toán viết phương trình đường thẳng trong không gian: + Dạng 1: Viết phương trình tham số và phương trình chính tắc của đường thẳng d biết d đi qua điểm M (x0; y0; z0) và có vectơ chỉ phương u = (a; b; c). + Dạng 2: Viết phương trình tham số của đường thẳng d biết d đi qua hai điểm A, B cho trước. + Dạng 3: Viết phương trình đường thẳng d đi qua điểm M và vuông góc với mặt phẳng (α). + Dạng 4: Viết phương trình đường thẳng d đi qua điểm M và song song với đường thẳng d’. + Dạng 5: Đường thẳng d đi qua điểm M và song song với 2 mặt phẳng cắt nhau (P) và (Q). + Dạng 6: Viết phương trình đường thẳng d đi qua điểm M, song song với mặt phẳng (P) và vuông góc với đường thẳng d’ (d’ không vuông góc với (P)). + Dạng 7 : Viết phương trình đường thẳng d đi qua điểm M và vuông góc với hai đường thẳng d1 và d2 (d1 và d2 là hai đường thẳng chéo nhau). + Dạng 8: Viết phương trình đường thẳng d đi qua điểm M đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 9: Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2. + Dạng 10: Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d1. + Dạng 11: Viết phương trình đường thẳng d nằm trong mp(P) đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 12: Viết phương trình đường thẳng d song song với d’ đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 13: Viết phương trình đường thẳng d song song và cách đều hai đường thẳng song song d1 và d2 đồng thời d nằm trong mặt phẳng chứa d1 và d2. + Dạng 14: Viết phương trình đường thẳng d là đường vuông góc chung của hai đường thẳng d1 và d2 chéo nhau. + Dạng 15 : Viết phương trình tham số của đường thẳng d là hình chiếu của d’ trên mặt phẳng (P).

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm hình học không gian - Lê Viết Nhơn
Tài liệu gồm 68 trang tuyển tập các bài toán trắc nghiệm chuyên đề hình học không gian. Nội dung tài liệu gồm 2 chương: Chương I. Khối đa diện – thể tích khối đa diện Bài 1. Góc_khoảng cách Bài 2. Khối đa diện Bài 3. Thể tích Bài tập trắc nghiệm Phần 1. Khối đa diện Phần 2. Thể tích Phần 3. Tỷ số thể tích Phần 4. Góc – khoảng cách Phần 5. Mặt cầu ngoại tiếp khối đa diện Chương II. Mặt nón – mặt trụ – mặt cầu Phần 6. Mặt nón Phần 7. Mặt trụ Phần 8. Mặt cầu [ads] Trích dẫn tài liệu : + Từ một mảnh giấy hình vuông cạnh là 4cm, người ta gấp nó thành bốn phần đều nhau rồi dựng lên thành bốn mặt xung quanh của hình hình lăng trụ tứ giác đều như hình vẽ. Hỏi thể tích của khối lăng trụ này là bao nhiêu. + Khối lăng trụ ABC.A’B’C’ có đáy là một tam giác đều cạnh a, góc giữa cạnh bên và mặt phẳng đáy bằng 30 độ. Hình chiếu của đỉnh A’ trên mặt phẳng đáy (ABC) trùng với trung điểm của cạnh BC. Tính thể tích của khối lăng trụ đã cho. + Người ta cắt miếng bìa hình tam giác cạnh bằng 10cm như hình bên và gấp theo các đường kẻ, sau đó dán các mép lại để được hình tứ diện đều. Tính thể tích của khối tứ diện tạo thành.
Lý thuyết và một số bài tập cơ bản về thể tích khối đa diện - Lê Bá Bảo
Tài liệu gồm 32 trang tổng hợp lý thuyết, công thức giải và một số bài tập thể tích khối đa diện có lời giải chi tiết tương tự các bài toán trong đề minh họa lần 3 của Bộ GD và ĐT. A. Lý thuyết Phần 1. Khối đa diện, tính chất và cách dựng Nêu khái niệm, hình dạng và tính chất của các khối hình: tứ diện, hình chóp, hình lăng trụ, hình hộp, hình chóp tam giác đều, hình chóp tứ giác đều, hình lăng trụ đứng, hình hộp đứng, hình hộp chữ nhật, hình lập phương. [ads] Phần 2. Kỹ năng góc và khoảng cách Nắm vững kỹ năng xác định góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng, góc giữa hai mặt phẳng. Kỹ năng xác định khoảng cách từ một điểm đến đường thẳng, khoảng cách từ điểm đến mặt phẳng, khoảng cách giữa hai đường thẳng chéo nhau. Phần 3. Các kết quả và tính chất quan trọng cần lưu ý Các hệ quả rút ra hỗ trợ cho việc giải toán về thể tích khối đa diện B. Bài tập trắc nghiệm thể tích khối đa diện có đáp án và lời giải chi tiết
Bài tập tỷ số thể tích khối đa diện - Lê Bá Bảo
Tài liệu gồm 15 trang trình bày phương pháp, ví dụ mẫu có lời giải chi tiết và bài tập rèn luyện về dạng toán tỷ số thể tích khối đa diện. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm cạnh SA. Mặt phẳng (α) qua M và song song với (ABCD), cắt các cạnh SB, SC, SD lần lượt tại N, P, Q. Gọi V1 = VS.ABCD và V2 = VS.MNPQ. Khẳng định nào sau đây đúng? A. V1 = 8V2 B. V1 = 6V2 C. V1 = 16V2 D. V1 = 4V2 [ads] + Cho khối lăng trụ tam giác ABC.A’B’C’, đường thẳng đi qua trọng tâm tam giác ABC song song với BC cắt AB tại D, cắt AC tại E. Mặt phẳng đi qua A, D, E’ chia khối lăng trụ thành hai phần, tỉ số thể tích (số bé chia cho số lớn) của chúng bằng? + Cho tứ diện ABCD. Gọi B’ và C’ lần lượt là trung điểm của AB và AC. Khi đó tỉ số thể tích của khối tứ diện AB’C’D và khối tứ diện ABCD bằng?
86 bài tập trắc nghiệm thể tích khối chóp có đáp án - Bùi Thái Nam
Tài liệu gồm 9 trang với 86 bài toán trắc nghiệm thuộc chuyên đề thể tích khối chóp có đáp án. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 16 cm, AD = 30 cm và hình chiếu của S trên (ABCD) trùng với giao điểm hai đường chéo AC, BD. Biết rằng mặt phẳng (SCD) tạo với mặt đáy một góc φ sao cho cosφ = 5/13. Tính thể tích khối chóp S.ABCD. [ads] + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = AC = a. Hình chiếu vuông góc của S lên mặt phẳng (ABC) là trung điểm H của BC, mặt phẳng (SAB) tạo với đáy một góc bằng 60 độ. Thể tích khối chóp S.ABC là? + Cho hình chóp S.ABC có tam giác ABC vuông tại A , AB = AC = a, I là trung điểm của SC, hình chiếu vuông góc của S lên mặt phẳng ( ABC) là trung điểm H của BC, mặt phẳng (SAB) tạo với đáy 1 góc bằng 60 độ. Thể tích khối chóp S.ABC là?