Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Toàn tập phương pháp tọa độ trong không gian cơ bản

Tài liệu gồm 90 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển chọn hệ thống bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian cơ bản lớp 12 THPT, giúp học sinh rèn luyện khi học chương trình Hình học 12 chương 3. + Đại cương hệ trục tọa độ Oxyz p1. + Đại cương hệ trục tọa độ Oxyz p2. + Đại cương hệ trục tọa độ Oxyz p3. + Đại cương hệ trục tọa độ Oxyz p4. + Đại cương hệ trục tọa độ Oxyz p5. + Đại cương hệ trục tọa độ Oxyz p6. + Đại cương hệ trục tọa độ Oxyz p7. + Đại cương hệ trục tọa độ Oxyz p8. + Mặt phẳng Oxyz p1. + Mặt phẳng Oxyz p2. + Mặt phẳng Oxyz p3. + Mặt phẳng Oxyz p4. + Mặt phẳng Oxyz p5. + Mặt phẳng Oxyz p6. + Mặt phẳng Oxyz p7. + Mặt phẳng Oxyz p8. + Mặt cầu Oxyz p1. + Mặt cầu Oxyz p2. + Mặt cầu Oxyz p3. + Mặt cầu Oxyz p4. + Mặt cầu Oxyz p5. + Mặt cầu Oxyz p6. + Mặt cầu Oxyz p7. + Mặt cầu Oxyz p8. + Đường thẳng Oxyz p1. + Đường thẳng Oxyz p2. + Đường thẳng Oxyz p3. + Đường thẳng Oxyz p4. + Đường thẳng Oxyz p5. + Đường thẳng Oxyz p6. + Đường thẳng Oxyz p7. + Đường thẳng Oxyz p8. + Liên kết mặt phẳng – đường thẳng Oxyz p1. + Liên kết mặt phẳng – đường thẳng Oxyz p2. + Liên kết mặt phẳng – đường thẳng Oxyz p3. + Liên kết mặt phẳng – đường thẳng Oxyz p4. + Liên kết mặt phẳng – đường thẳng Oxyz p5. + Liên kết mặt phẳng – đường thẳng Oxyz p6. + Liên kết mặt phẳng – đường thẳng Oxyz p7. + Liên kết mặt phẳng – đường thẳng Oxyz p8. + Tổng hợp tọa độ không gian Oxyz p1. + Tổng hợp tọa độ không gian Oxyz p2. + Tổng hợp tọa độ không gian Oxyz p3. + Tổng hợp tọa độ không gian Oxyz p4. + Tổng hợp tọa độ không gian Oxyz p5. + Tổng hợp tọa độ không gian Oxyz p6. + Tổng hợp tọa độ không gian Oxyz p7. + Tổng hợp tọa độ không gian Oxyz p8.

Nguồn: toanmath.com

Đọc Sách

Tài liệu chuyên đề phương trình đường thẳng trong không gian
Tài liệu gồm 327 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề phương trình đường thẳng trong không gian, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 3. PHƯƠNG TRÌNH ĐƯỜNG THẲNG TRONG KHÔNG GIAN. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Xác định vectơ chỉ phương của đường thẳng. + Dạng 2. Lập phương trình đường thẳng. + Dạng 3. Xét vị trí tương đối của hai đường thẳng. + Dạng 4. Vị trí tương đối của đường thẳng và mặt phẳng. + Dạng 5. Hình chiếu của một điểm lên một đường thẳng. + Dạng 6. Hình chiếu của một điểm lên một mặt phẳng. + Dạng 7. Khoảng cách từ điểm đến đường thẳng, khoảng cách giữa hai đường thẳng chéo nhau. + Dạng 8. Góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng. + Dạng 9. Xác định tọa độ điểm trên đường thẳng. HỆ THỐNG MỘT SỐ DẠNG TOÁN THƯỜNG GẶP VỀ LẬP PHƯƠNG TRÌNH ĐƯỜNG THẲNG: + Bài toán 1. Lập phương trình đường thẳng d đi qua điểm A và d vuông góc (α). + Bài toán 2. Lập phương trình đường thẳng d đi qua điểm A và d // ∆. + Bài toán 3. Lập phương trình đường thẳng d đi qua điểm A và d // (P), d // (Q), (P) không song song, không trùng với (Q). + Bài toán 4. Lập phương trình đường thẳng d là giao tuyến của hai mặt phẳng (P) và (Q). + Bài toán 5. Lập phương trình đường thẳng d đi qua A và d vuông góc d1, d vuông góc d2, d1 không song song, không trùng với d2. + Bài toán 6. Lập phương trình đường thẳng d đi qua A và d // (P), d vuông góc d’. + Bài toán 7. Lập phương trình đường thẳng d’ là hình chiếu vuông góc của d trên mặt phẳng (α). III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Bài tập trắc nghiệm mức độ 5 – 6 điểm (nhận biết). 3. Bài tập trắc nghiệm mức độ 7 – 8 điểm (thông hiểu). 4. Bài tập trắc nghiệm mức độ 9 – 10 điểm (vận dụng – vận dụng cao).
Tài liệu chuyên đề phương trình mặt phẳng
Tài liệu gồm 267 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề phương trình mặt phẳng, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 2 . PHƯƠNG TRÌNH MẶT PHẲNG. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Viết phương trình mặt phẳng (α) khi biết một điểm M và vectơ pháp tuyến n của nó. + Dạng 2. Viết phương trình mặt phẳng (α) đi qua một điểm M và song song với một mặt phẳng (β) cho trước. + Dạng 3. Viết phương trình mặt phẳng (α) đi qua ba điểm A, B, C không thẳng hàng. + Dạng 4. Viết phương trình mặt phẳng (α) qua hai điểm A, B và vuông góc với mặt phẳng (β). + Dạng 5. Viết phương trình mặt phẳng (α) đi qua một điểm M và vuông góc với hai mặt phẳng (P), (Q) cho trước. + Dạng 6. Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) và cách (β) một khoảng k cho trước. + Dạng 7. Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) cho trước và cách điểm M một khoảng k cho trước. + Dạng 8. Viết phương trình mặt phẳng (α) tiếp xúc với mặt cầu (S). + Dạng 9. Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với đường thẳng ∆. + Dạng 10. Viết phương trình mặt phẳng(α) chứa đường thẳng ∆, vuông góc với mặt phẳng (β) hoặc đi qua một điểm, chứa đường thẳng ∆, vuông góc với mặt phẳng (β). + Dạng 11. Viết phương trình mặt phẳng(α) chứa đường thẳng ∆ và song song với ∆’ (∆ và ∆’ chéo nhau). + Dạng 12. Viết phương trình mặt phẳng (α) chứa đường thẳng ∆ và một điểm M. + Dạng 13. Viết phương trình mặt phẳng (α) chứa hai đường thẳng cắt nhau ∆ và ∆’. + Dạng 14. Viết phương trình mặt phẳng (α) chứa hai đường thẳng song song ∆ và ∆’. + Dạng 15. Viết phương trình mặt phẳng (α) đi qua một điểm M và song song với hai đường thẳng ∆ và ∆’ chéo nhau cho trước. + Dạng 16. Viết phương trình mặt phẳng (α) chứa một đường thẳng ∆ và tạo với một mặt phẳng (β) cho trước một góc ϕ cho trước. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Bài tập trắc nghiệm mức độ 5 – 6 điểm (nhận biết). 3. Bài tập trắc nghiệm mức độ 7 – 8 điểm (thông hiểu). 4. Bài tập trắc nghiệm mức độ 9 – 10 điểm (vận dụng – vận dụng cao).
Tài liệu chuyên đề hệ tọa độ trong không gian
Tài liệu gồm 186 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề hệ tọa độ trong không gian, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 1 . HỆ TOẠ ĐỘ TRONG KHÔNG GIAN. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. HỆ TOẠ ĐỘ TRONG KHÔNG GIAN. + Dạng 1. Các câu liên quan tọa độ điểm, tọa độ của vectơ. + Dạng 2. Tích vô hướng và các ứng dụng của tích vô hướng. PHƯƠNG TRÌNH MẶT CẦU. + Dạng 1. Tìm tâm và bán kính mặt cầu. + Dạng 2. Viết phương trình mặt cầu. + Dạng 3. Sự tương giao và sự tiếp xúc. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Các dạng bài tập trắc nghiệm. HỆ TOẠ ĐỘ TRONG KHÔNG GIAN. + Dạng 1. Tìm tọa độ điểm, véctơ liên quan đến hệ trục tọa độ Oxyz. + Dạng 2. Tích vô hướng và ứng dụng. + Dạng 3. Tích có hướng và ứng dụng. PHƯƠNG TRÌNH MẶT CẦU. + Dạng 1. Xác định tâm và bán kính. + Dạng 2. Viết phương trình mặt cầu. + Dạng 3. Một số bài toán liên quan đến tiếp tuyến mặt cầu. + Dạng 4. Bài toán cực trị.
Áp dụng bất đẳng thức Minkowski giải bài toán cực trị số phức và Oxyz
Tài liệu gồm 15 trang, được biên soạn bởi thầy giáo Vũ Quốc Triệu, hướng dẫn áp dụng bất đẳng thức Minkowski để giải quyết một số bài toán nâng cao về số phức và hình học giải tích Oxyz có liên quan đến giá trị lớn nhất / nhỏ nhất. A. BẤT ĐẲNG THỨC MINKOWSKI. Hermann Minkowski (1864 – 1909) là một nhà Toán học sinh tại Aleksotas (ngoại ô của Kaunas, Litva) trong một gia đình gốc Đức, Ba Lan và Do Thái. Tại Đức,Ông học ở Đại học Berlin và Königsberg, nơi ông nhận học vị tiến sĩ năm 1885 dưới sự hướng dẫn của Ferdinand von Lindemann. Khi còn là sinh viên tại Königsberg, năm 1883 Ông đã được nhận giải thưởng Toán học của Viện khoa học Pháp cho các công trình về lý thuyết các dạng Toàn phương. Hermann Minkowski đã dạy tại đại học Bonn, Göttingen, Königsberg và Zurich. Tại viện Bách Khoa liên bang (Federal Polytechnic Institute), nay là ETH Zurich, ông là một trong những thầy giáo của Albert Einstein (1979 – 1955). Bất đẳng thức Minkowski được chứng minh dễ dàng bằng phương pháp véctơ nên có thể gọi là bất đẳng thức “độ dài véctơ”. B. ÁP DỤNG. C. BÀI TẬP TỰ LUYỆN.