Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Đồng Nai

Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Đồng Nai gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Cho tam giác ABC vuông tại A ,đường cao AH .Gọi (P) và (Q) theo thứ tự là đường tròn nội tiếp của tam giác AHB và tam giác AHC. Kẻ tiếp tuyến chung ngoài (khác BC) của hai đường tròn (P) và (Q) nó cắt AB, AH, AC theo thứ tự ở M, K, N [ads] 1. Chứng minh tam giác HPQ đồng dạng với tam giác ABC 2. Chứng minh PK song song với AB và tứ giác BMNC nội tiếp 3. Chứng minh năm điểm A, M, P, Q, N cùng nằm trên một đường tròn 4. Gọi I là tâm đường tròn ngoại tiếp tam giác ABC, biết AB=a, AC=3a. Một đường thẳng thay đổi đi qua H cắt đường tròn ngoại tiếp tam giác ABC tại D và E. Tính giá trị lớn nhất của diện tích tam giác IDE theo a

Nguồn: toanmath.com

Đọc Sách

Đề thi vào 10 môn Toán (chung) năm 2021 2022 trường chuyên Lê Hồng Phong Nam Định (Đề 1)
Nội dung Đề thi vào 10 môn Toán (chung) năm 2021 2022 trường chuyên Lê Hồng Phong Nam Định (Đề 1) Bản PDF - Nội dung bài viết Đề thi vào 10 môn Toán (chung) năm 2021 - 2022 trường chuyên Lê Hồng Phong Nam Định (Đề 1) Đề thi vào 10 môn Toán (chung) năm 2021 - 2022 trường chuyên Lê Hồng Phong Nam Định (Đề 1) Trong đề thi này, chúng ta sẽ cùng tìm hiểu và giải quyết các bài toán thú vị có trong đề thi vào 10 môn Toán (chung) năm 2021 - 2022 của trường chuyên Lê Hồng Phong Nam Định. Hãy cùng Sytu đến với các câu hỏi và bài toán thú vị sau: - Cho tam giác nhọn ABC, AB AC nội tiếp đường tròn tâm O đường kính AP. Các đường cao BE và CF cắt nhau tại H. Chúng ta sẽ chứng minh rằng tứ giác BCEF nội tiếp và AE AC AF AB. Sau đó, chúng ta sẽ chứng minh IK song song với AP và HMC HAN. - Tiếp theo, chúng ta sẽ tìm tất cả các giá trị của tham số m để hai đường thẳng 2ymx + m (m ≠ 0) và yx 9 2 song song. - Cuối cùng, chúng ta sẽ tính thể tích của hình nón có đáy bằng 5cm và bán kính đáy 3cm. Đề thi này đòi hỏi sự tỉ mỉ và chính xác trong các phép tính và bài toán hình học. Đề thi này là cơ hội để các em học sinh thể hiện kiến thức và kỹ năng của mình. Hãy cùng nhau học tập và vượt qua thách thức này nhé!
Đề thi thử Toán vào lần 1 năm 2022 2023 trường Lương Thế Vinh Hà Nội
Nội dung Đề thi thử Toán vào lần 1 năm 2022 2023 trường Lương Thế Vinh Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào lớp 10 lần 1 năm 2022 - 2023 trường Lương Thế Vinh Hà Nội Đề thi thử Toán vào lớp 10 lần 1 năm 2022 - 2023 trường Lương Thế Vinh Hà Nội Vào ngày ... tháng 01 năm 2022, trường THCS & THPT Lương Thế Vinh tại thành phố Hà Nội đã tổ chức kỳ thi thử tuyển sinh vào lớp 10 môn Toán cho năm học 2022 - 2023 lần đầu tiên. Đề thi thử Toán lần 1 năm 2022 - 2023 của trường Lương Thế Vinh Hà Nội gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài của học sinh là 90 phút (không tính thời gian phát đề).
Đề thi thử Toán vào lần 2 năm 2022 2023 trường Lương Thế Vinh Hà Nội
Nội dung Đề thi thử Toán vào lần 2 năm 2022 2023 trường Lương Thế Vinh Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào lần 2 năm 2022-2023 trường Lương Thế Vinh Hà Nội Đề thi thử Toán vào lần 2 năm 2022-2023 trường Lương Thế Vinh Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến bạn đề thi thử môn Toán tuyển sinh vào lớp 10 lần 2 năm học 2022 – 2023 tại trường THCS&THPT Lương Thế Vinh, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 26 tháng 03 năm 2022. Dưới đây là một số câu hỏi trong đề thi: 1. Chiều cao của một ngọn hải đăng là bao nhiêu? Biết rằng khi tia nắng mặt trời chiếu qua đỉnh của ngọn hải đăng hợp với mặt đất một góc 35° thì bóng của ngọn hải đăng trên mặt đất dài 20m (làm tròn kết quả đến chữ số thập phân thứ nhất). 2. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Nếu giảm chiều rộng của một mảnh vườn hình chữ nhật đi 3m và tăng chiều dài thêm 8m thì diện tích mảnh vườn giảm đi 54m. Nếu tăng chiều rộng của mảnh vườn thêm 2m và giảm chiều dài đi 4m thì diện tích mảnh vườn tăng thêm 32m². Hãy tính các kích thước của mảnh vườn. 3. Cho tam giác ABC nhọn, các đường cao BM và CN cắt nhau tại H. - Chứng minh tứ giác AMHN nội tiếp một đường tròn và xác định vị trí tâm I của đường tròn đó. - Gọi D là một điểm thuộc cạnh BC (D khác B và D khác C). Đường tròn ngoại tiếp tam giác BDN và đường tròn ngoại tiếp tam giác CDM cắt nhau tại điểm thứ hai là E. Chứng minh E thuộc đường tròn ngoại tiếp tam giác AMN. - Gọi K là một điểm di động trên nửa đường tròn đường kính BC (cung chứa điểm M) và Q là chân đường vuông góc hạ từ K xuống BC. Tìm vị trí điểm K để tổng KQ + BQ đạt giá trị lớn nhất. Hy vọng rằng đề thi thử Toán này sẽ giúp các em học sinh ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em đạt kết quả cao trong kỳ thi tuyển sinh sắp tới!
Đề thi thử Toán tuyển sinh 10 năm 2022 – 2023 trường THCS Chu Văn An – Thanh Hoá
Nội dung Đề thi thử Toán tuyển sinh 10 năm 2022 – 2023 trường THCS Chu Văn An – Thanh Hoá Bản PDF - Nội dung bài viết Đề thi thử Toán tuyển sinh 10 năm 2022 – 2023 trường THCS Chu Văn An – Thanh Hoá Đề thi thử Toán tuyển sinh 10 năm 2022 – 2023 trường THCS Chu Văn An – Thanh Hoá Chúng tôi xin gửi đến quý thầy cô và các em học sinh lớp 8 đề thi thử môn Toán tuyển sinh vào lớp 10 năm học 2022 – 2023 của trường THCS Chu Văn An, huyện Nga Sơn, tỉnh Thanh Hoá. Đề thi sẽ diễn ra vào Chủ Nhật ngày 27 tháng 03 năm 2022. Dưới đây là một số câu hỏi trích dẫn từ đề thi thử Toán tuyển sinh 10 năm 2022 – 2023 của trường THCS Chu Văn An – Thanh Hoá: 1. Cho hai đường thẳng (d): y = -x + m + 2 và (d'): y = (m^2 - 2)x + 3. Hãy tìm giá trị của m để (d) và (d') song song với nhau. 2. Giải phương trình x^2 + 5x + m – 2 = 0 với m là tham số. a) Giải phương trình khi m = 6. b) Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1, x2 sao cho biểu thức S = (x1 – x2)^2 + 8x1x2 đạt giá trị lớn nhất. 3. Trong tam giác ABC có ba góc nhọn và nội tiếp đường tròn (O). Hai đường cao BE và CF của tam giác ABC cắt nhau tại H. a) Chứng minh rằng bốn điểm B, C, E, F đều thuộc một đường tròn. b) Chứng minh rằng đường thẳng OA vuông góc với đường thẳng EF. c) Gọi K là trung điểm của đoạn thẳng BC. Đường thẳng AO cắt đường thẳng BC tại điểm I, đường thẳng EF cắt đường thẳng AH tại điểm P. Chứng minh tam giác APE đồng dạng với tam giác AIB và đường thẳng KH song song với đường thẳng IP.