Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán cực trị hình học trong không gian - Quách Đăng Thăng

Tài liệu gồm 20 trang hướng dẫn phương pháp giải bài toán cực trị hình học không gian thông qua các ví dụ có lời giải chi tiết. Tài liệu sáng kiến kinh nghiệm của thầy Quách Đăng Thăng trình bày phương pháp về các bài toán cực trị hình học trong không gian như: Tìm điểm, tìm độ dài để thể tích đa diện, độ dài đoạn thẳng đạt lớn nhất, nhỏ nhất. Thực tế giảng dạy cho thấy môn Toán học trong trường phổ thông là một trong những môn học khó, phần lớn các em học môn Toán rất yếu đặc biệt là hình học không gian, nếu không có những bài giảng và phương pháp dạy môn Hình học phù hợp đối với thế hệ học sinh thì dễ làm cho học sinh thụ động trong việc tiếp thu, cảm nhận. Đã có hiện tượng một số bộ phận học sinh không muốn học Hình học, ngày càng xa rời với giá trị thực tiễn của Hình học. Nhiều giáo viên chưa quan tâm đúng mức đối tượng giáo dục, chưa đặt ra cho mình nhiệm vụ và trách nhiệm nghiên cứu, hiện tượng dùng đồng loạt cùng một cách dạy, một bài giảng cho nhiều lớp, nhiều thế hệ học trò vẫn còn nhiều. Do đó phương pháp ít có tiến bộ mà người giáo viên đã trở thành người cảm nhận, truyền thụ tri thức một chiều, còn học sinh không chủ động trong quá trình lĩnh hội tri thức – kiến thức Hình học làm cho học sinh không thích học môn Hình học. [ads] Tuy nhiên với việc đại số hóa hình học thì các bài toán hình học không gian trở lên đơn giản và dễ nhìn hơn. Gần đây trong các đề thi Đại học hàng năm đã bắt đầu xuất hiện các bài toán cực trị hình học trong không gian mà đôi khi việc giải các bài toán này một cách trực tiếp bằng kiến thức hình học không gian thuần tuy là vô cùng khó khăn. Chính vì lý do đó tôi chọn đề tài Bài toán cực trị hình học trong không gian. Trong phạm vi bài viết này, với mong muốn giúp các e có thêm một tài liệu ôn thi Đại học – Cao đẳng và đồng thời để các e hiểu được rằng bài toán cực trị nói chung và bài toán cực trị trong hình học không gian không phải là quá khó không thể giải quyết được. Đối tượng áp dụng chủ yếu cho tài liệu này về cơ bản là trên lớp 12A2, ngoài ra tôi cũng đan xen trong các tiết học của các lớp 12A6 và 12A8. Đối tượng nghiên cứu là các tài liệu sách giáo khoa Hình học 12, sách bài tập Hình học 12 cơ bản và nâng cao, các bài giảng trên mạng Internet, các tài liệu và forum trên các diễn đàn Toán học trên mạng Internet cùng một số tài liệu tham khảo khác.

Nguồn: toanmath.com

Đọc Sách

Bài toán khoảng cách trong không gian - Nguyễn Tất Thu
Bài viết này sẽ trình bày cách tính khoảng cách từ một điểm đến mặt phẳng và khoảng cách giữa hai đường thẳng chéo nhau. Quy trình tính khoảng cách là chúng ta tìm cách chuyển về khoảng cách từ chân đường cao đến một mặt phẳng có giao tuyến với mặt đáy, hoặc khoảng cách từ một điểm nằm trong mặt phẳng đáy đến một mặt phẳng chứa đường cao của hình chóp. Với mô hình lăng trụ, ta chỉ cần tách phần cần tính để đưa về mô hình của hình chóp. Bài toán 1 . Khoảng cách từ một điểm đến mặt phẳng. Tính khoảng cách từ điểm M đến mặt phẳng (α). Để tính được khoảng từ điểm M đến mặt phẳng (α) ta có các cách sau: + Cách 1: Xác định hình chiếu vuông góc H của M lên (α). + Cách 2: Sử dụng công thức thể tích. + Cách 3: Chuyển việc tính khoảng cách từ M về tính khoảng cách từ điểm N dễ tính hơn. + Cách 4: Gắn hệ trục tọa độ Oxyz và sử dụng công thức khoảng cách từ điểm đến mặt phẳng. [ads] Bài toán 2 . Khoảng cách giữa hai đường thẳng chéo nhau. Cho hai đường thẳng chéo nhau a và b. Tính khoảng cách giữa a và b. Để tính khoảng cách giữa hai đường thẳng chéo nhau ta có thể dùng một trong các cách sau: + Cách 1: Dựng đoạn vuông góc chung MN của a và b. Khi đó d(a,b) = MN. + Cách 2: Dựng mặt phẳng (α) đi qua a và song song với b, khi đó: d(a,b) = d(a,(α)) = d(M,(α)) với M là điểm bất kì thuộc (α). + Cách 3: Dựng hai mặt phẳng (α) đi qua a và song song với b, (β) đi qua b và song song với a. Khi đó: d(a,b) = d((α),(β)). + Cách 4: Sử dụng phương pháp tọa độ.
Tóm tắt lý thuyết và bài tập trắc nghiệm khối đa diện và thể tích khối đa diện
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm khối đa diện và thể tích khối đa diện, một chủ đề rất quan trọng trong chương trình Hình học 12 chương 1. Bên cạnh tài liệu khối đa diện và thể tích khối đa diện dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm khối đa diện và thể tích khối đa diện: A. KIẾN THỨC CƠ BẢN a. HÌNH HỌC PHẲNG. 1. Các hệ thức lượng trong tam giác vuông. 2. Các tỉ số lượng giác của góc nhọn trong tam giác vuông. 3. Các hệ thức lượng trong tam giác thường. 4. Định lý Thales. 5. Diện tích đa giác. b. CÁC PHƯƠNG PHÁP CHỨNG MINH HÌNH HỌC. 1. Chứng minh đường thẳng song song với mặt phẳng. 2. Chứng minh hai mặt phẳng song song. 3. Chứng minh hai đường thẳng song song. 4. Chứng minh đường thẳng vuông góc với mặt phẳng. 5. Chứng minh hai đường thẳng vuông góc. 6. Chứng minh hai mặt phẳng vuông góc. c. HÌNH CHÓP ĐỀU. 1. Định nghĩa hình chóp đều. 2. Hai hình chóp đều thường gặp. d. THỂ TÍCH KHỐI ĐA DIỆN. 1. Thể tích khối chóp. 2. Thể tích khối lăng trụ. 3. Thể tích hình hộp chữ nhật. 4. Tỉ số thể tích. 5. Hình chóp cụt. B. BÀI TẬP TRẮC NGHIỆM C. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM
Xác định góc giữa hai đường thẳng, đường thẳng và mặt phẳng, hai mặt phẳng
Tài liệu gồm 21 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán xác định góc giữa hai đường thẳng, đường thẳng và mặt phẳng, hai mặt phẳng, được phát triển dựa trên câu 17 đề thi tham khảo THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu xác định góc giữa hai đường thẳng, đường thẳng và mặt phẳng, hai mặt phẳng: A. KIẾN THỨC CẦN NHỚ 1. Góc giữa hai đường thẳng Phương pháp 1: Sử dụng định lý hàm số cosin hoặc tỉ số lượng giác. Phương pháp 2: Sử dụng tích vô hướng: Nếu u và v lần lượt là hai vectơ chỉ phương của hai đường thẳng a và b thì góc φ của hai đường thẳng này được xác định bởi công thức: cos φ = |u.v|/|u|.|v|. 2. Góc giữa đường thẳng và mặt phẳng Muốn xác định góc của đường thẳng a và (P) ta tìm hình chiếu vuông góc a’ của a trên (P). Khi đó (a;(P)) = (a;a’). 3. Góc giữa hai mặt phẳng Phương pháp 1: Dựng hai đường thẳng a, b lần lượt vuông góc với hai mặt phẳng (α) và (β). Khi đó, góc giữa (α) và (β) là ((α);(β)) = (a;b). Phương pháp 2: Xác định giao tuyến c của hai mặt phẳng (α) và (β). Dựng hai đường thẳng a, b lần lượt nằm trong hai mặt phẳng và cùng vuông góc với giao tuyến c tại một điểm trên c. Khi đó: ((α);(β)) = (a;b). 4. Sử dụng phương pháp tọa độ trong không gian Chọn hệ trục thích hợp và cụ thể hóa tọa độ các điểm. B. BÀI TẬP MẪU 1. Bài toán : Cho hình chóp S.ABCD có đáy là hình vuông cạnh a√3, SA vuông góc với mặt phẳng đáy, SA = a√2 (minh họa như hình vẽ). Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng? 2. Phân tích hướng dẫn giải a. Dạng toán: Đây là dạng toán tính góc giữa đường thẳng và mặt phẳng. b. Hướng giải: Bước 1: Xác định hình chiếu của SC trên mặt phẳng (ABCD). Bước 2: Tính góc giữa SC và hình chiếu của nó. C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN
Bài toán khoảng cách giữa hai đường thẳng chéo nhau
Tài liệu gồm 37 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán khoảng cách giữa hai đường thẳng chéo nhau, được phát triển dựa trên câu 37 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu bài toán khoảng cách giữa hai đường thẳng chéo nhau: A. KIẾN THỨC CẦN NHỚ 1. Khoảng cách giữa điểm và mặt phẳng Khoảng cách giữa một điểm và một mặt phẳng là khoảng cách từ điểm đó tới hình chiếu vuông góc của nó lên mặt phẳng đó. + Khoảng cách từ điểm M bất kì đến mặt phẳng (α) có chứa đường cao của hình chóp, hình lăng trụ. + Khoảng cách từ hình chiếu vuông góc A của đỉnh S đến mặt phẳng bên (α). + Khoảng cách từ điểm bất kì đến mặt phẳng bên. 2. Khoảng cách giữa một đường thẳng và một mặt phẳng song song Khoảng cách giữa một đường thẳng và một mặt phẳng song song là khoảng cách từ một điểm bất kì trên đường thẳng này tới mặt phẳng kia. [ads] 3. Khoảng cách giữa hai mặt phẳng song song Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm bất kì trên mặt phẳng này tới mặt phẳng kia. 4. Khoảng cách hai đường thẳng chéo nhau a. Khoảng cách hai đường thẳng chéo nhau là độ dài đoạn vuông góc chung  của hai đường thẳng đó. b. Cách tính khoảng cách giữa hai đường thẳng chéo nhau + Cách 1: Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa một trong hai đường thẳng đó và mặt phẳng song song với nó, chứa đường thẳng còn lại. + Cách 2: Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó. + Cách 3: Dựng và tính độ dài đoạn vuông góc chung của hai đường thẳng chéo nhau a và b. B. BÀI TẬP MẪU C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN