Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào lớp 10 môn Toán năm học 2021 2022 tỉnh Lào Cai kèm đáp án chi tiết

Nguồn: onluyen.vn

Xem

Đề vào 10 môn Toán (chuyên Toán) 2022 2023 trường chuyên Hùng Vương Phú Thọ
Nội dung Đề vào 10 môn Toán (chuyên Toán) 2022 2023 trường chuyên Hùng Vương Phú Thọ Bản PDF - Nội dung bài viết Đề vào 10 môn Toán (chuyên Toán) 2022 2023 trường chuyên Hùng Vương Phú Thọ Đề vào 10 môn Toán (chuyên Toán) 2022 2023 trường chuyên Hùng Vương Phú Thọ Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Toán) năm học 2022 – 2023 của trường THPT chuyên Hùng Vương, tỉnh Phú Thọ. Đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Đề thi đi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề vào 10 môn Toán (chuyên Toán) 2022 – 2023 trường chuyên Hùng Vương – Phú Thọ: + Trong mặt phẳng tọa độ Oxy, cho điểm A(14,6); 20,22. Gọi H là hình chiếu vuông góc của A trên trục Ox. Hãy tìm số điểm nguyên nằm trong tam giác OAH (điểm nguyên có hoành độ và tung độ là các số nguyên). + Cho hai đường tròn (O), (R) và (O'), (R'); cắt nhau tại hai điểm A và B ((R), (R') và (O), (O') thuộc hai nửa mặt phẳng đối nhau bờ AB). Đường thẳng AO cắt (O') và (O') lần lượt tại C và M, đường thẳng AO' cắt (O) và (O') lần lượt tại N và D (C, D, M, N khác A). Gọi K là trung điểm của CD, H là giao điểm của CN và DM. a) Chứng minh rằng năm điểm M, N, O, K, B cùng thuộc một đường tròn. b) Gọi I là đường tròn ngoại tiếp tam giác HCD; E là điểm đối xứng của C qua B; P là giao điểm của AE và HD; F là giao điểm của BH với I (F khác H); Q là giao điểm của CF với BP. Chứng minh rằng BP//BQ. c) Chứng minh rằng ∠IBP = 90°. + Cho n là số nguyên dương sao cho 4, 13, n và 5, 16, n là các số chính phương. Chứng minh rằng 2023, 45, n chia hết cho 24. File WORD (dành cho quý thầy, cô): [link đến file WORD].
Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Hưng Yên
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Hưng Yên Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Hưng Yên Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Hưng Yên Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Hưng Yên. Đề thi này dành cho thí sinh dự thi vào các lớp chuyên Toán và chuyên Tin học, bao gồm đáp án và lời giải chi tiết. Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Hưng Yên bao gồm các câu hỏi sau: Cho tam giác ABC nhọn với AB và AC nội tiếp đường tròn O. Hai đường cao BE, CF cắt nhau tại H. Gọi K là giao điểm của hai đường thẳng EF và BC. Hãy chứng minh tứ giác BFEC nội tiếp và tính tỉ lệ KF.KE so với KB.KC. Đường thẳng AK cắt đường tròn (O) tại điểm M (M khác A). Gọi I là trung điểm của BC. Chứng minh ba điểm M, H, I thẳng hàng. Một chi tiết máy bao gồm hai nửa hình cầu bằng nhau và một hình trụ. Tính thể tích của chi tiết máy đó dựa trên kích thước cho trên hình vẽ. Trong mặt phẳng tọa độ Oxy, cho parabol y = x^2 và đường thẳng y = mx + 5. Tìm giá trị của tham số m để đường thẳng đó cắt parabol tại hai điểm phân biệt A và B sao cho x-coordinate của A và B là số nguyên. Đề tuyển sinh năm 2022-2023 của sở GD&ĐT Hưng Yên là cơ hội để các em học sinh thử sức và chuẩn bị cho kỳ thi tuyển sinh quan trọng. Hy vọng rằng đề thi sẽ giúp các em rèn luyện kỹ năng giải bài toán và chuẩn bị tốt cho kỳ thi sắp tới.
Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Hậu Giang
Nội dung Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Hậu Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Hậu Giang Đề thi tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Hậu Giang Chào đón quý thầy cô và các em học sinh lớp 9! Đây là đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT & THPT chuyên môn Toán năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Hậu Giang. Đề thi bao gồm 02 trang với tổng cộng 13 câu hỏi: 08 câu trắc nghiệm (chiếm 20% tổng số điểm) và 05 câu tự luận (chiếm 80% tổng số điểm). Thời gian làm bài là 90 phút (không tính thời gian phát đề). Đề thi đi kèm đáp án và lời giải chi tiết để học sinh tham khảo. Dưới đây là một số câu hỏi mẫu trong đề tuyển sinh lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Hậu Giang: 1. Cho đường tròn O có bán kính R = 3 và điểm M sao cho OM = R/2. Từ M kẻ hai tiếp tuyến MA, MB tới O với A và B là hai tiếp điểm. a) Chứng minh tứ giác MAOB nội tiếp. Tính diện tích S của tứ giác MAOB. b) Lấy điểm C trên đường tròn O sao cho tam giác ABC nhọn, AB = AC và có các đường cao BE, CF. Gọi H là trực tâm tam giác ABC và N, J lần lượt là trung điểm của BC, AH. Chứng minh tứ giác AJNO là hình bình hành và JEN = 90 độ. 2. Tính chu vi của đường tròn ngoại tiếp tam giác, biết tam giác ABC vuông tại A và BC = 6. 3. Cho hình thang có đáy lớn BC, đáy nhỏ AD, AD = BC cm, AC = 10 cm, AB = 5 cm và ACB = 45 độ. Tính diện tích S của hình thang đã cho. Đề thi hoàn toàn không xuất hiện tại đây, để tải file WORD chính thức về và tham gia thi tuyển, vui lòng liên hệ với sở GD&ĐT Hậu Giang. Chúc các em học sinh thực hiện bài thi tốt và đạt kết quả cao trong kỳ thi tuyển sinh sắp tới!
Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Hà Nam
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Hà Nam Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Hà Nam Chào các thầy cô giáo và các em học sinh lớp 9, hôm nay Sytu xin giới thiệu đến quý vị đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Hà Nam. Đề thi này bao gồm đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Hà Nam: 1. Trong tam giác ABC, AB//AC và đường cao BE cắt đoạn AC tại E, đường cao CF cắt đoạn AB tại F. Chứng minh rằng EF//BC. 2. Cho đường thẳng d và điểm A nằm ngoài đường thẳng d. Tìm tất cả các vị trí của điểm A sao cho khoảng cách từ A đến d là lớn nhất. 3. Cho a, b, c là các số thực dương thỏa mãn ab + bc + ca = 1. Chứng minh rằng a^2 + b^2 + c^2 ≥ √3. Những vấn đề này không chỉ giúp các em học sinh ôn tập môn Toán mà còn phát triển tư duy logic và khả năng giải quyết vấn đề. Hy vọng rằng đề thi này sẽ giúp các em chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới. Chúc các em học tốt!