Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 đợt 1 năm 2023 2024 trường THPT Sông Công Thái Nguyên

Nội dung Đề thi thử Toán vào 10 đợt 1 năm 2023 2024 trường THPT Sông Công Thái Nguyên Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 đợt 1 năm 2023 – 2024 trường THPT Sông Công Thái Nguyên Đề thi thử Toán vào 10 đợt 1 năm 2023 – 2024 trường THPT Sông Công Thái Nguyên Sytu xin được trình bày đến quý thầy cô và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT đợt 1 năm học 2023 – 2024 trường THPT Sông Công, tỉnh Thái Nguyên. Đề thi bao gồm 01 trang với 10 bài toán hình thức tự luận, thời gian làm bài 120 phút, không tính thời gian giao đề. Đề thi cung cấp đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ đề thi: Cho hình thang vuông ABCD có đường cao AD cm 2 AB cm 2 và CD cm 4. Hãy tính diện tích hình thang và bán kính đường tròn ngoại tiếp tam giác ABC. Cho ba điểm A, M, B phân biệt, thẳng hàng và M nằm giữa A B. Trên cùng một nửa mặt phẳng bờ là đường thẳng AB, dựng hai tam giác đều AMC và BMD. Gọi P là giao điểm của AD và BC. Chứng minh: a) Tứ giác AMPC nội tiếp. b) CP CB DP DA AB. Cho ABCD là một tứ giác nội tiếp có AC BC AD cm 5. Hai đường chéo AC BD cắt nhau tại E sao cho BE cm 12 và DE cm 3. Đường trung trực của đoạn thẳng CD cắt đoạn thẳng BE tại I. a) Chứng minh IC AD. b) Tính BCD. Đề thi thử Toán vào lớp 10 đợt 1 năm 2023 – 2024 trường THPT Sông Công Thái Nguyên không chỉ giúp các em học sinh rèn luyện kỹ năng làm bài thi mà còn giúp củng cố kiến thức Toán từ cơ bản đến nâng cao. Chúc các em thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi dành cho thí sinh thi vào lớp chuyên Toán và chuyên Tin học. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc : + Tìm tất cả các cặp số nguyên (x;y) thỏa mãn đẳng thức (y + 2)x2 + 1 = y2. Tìm tất cả các số nguyên dương n sao cho 3n + 1, 11n + 1 là các số chính phương và n + 3 là số nguyên tố. + Cho tam giác ABC có ba góc nhọn, AB < AC và nội tiếp đường tròn (O). Đường thẳng AO cắt đường thẳng BC tại điểm E. Gọi M là trung điểm của đoạn thẳng BC. Đường thẳng AM cắt đường tròn (O) tại điểm N (N khác A). Các tiếp tuyến của đường tròn (O) tại các điểm B, C cắt nhau tại điểm D. a) Chứng minh AOND là tứ giác nội tiếp và tia DO là phân giác của góc ADN. b) Đường thẳng AD cắt đường tròn (O) tại điểm P (P khác A). Đường tròn ngoại tiếp tam giác AME cắt đường tròn (O) tại điểm F (F khác A). Chứng minh AB.PC = AC.PB và ba điểm E, F, P thẳng hàng. c) Kẻ đường kính AK của đường tròn (O). Chứng minh ba điểm D, K, F thẳng hàng và đường thẳng FN đi qua trung điểm của đoạn thẳng DM. + Sau khi tổ chức một trận đấu giao hữu giữa hai đội bóng lớp 9A và 9B, Ban tổ chức có 11 gói kẹo muốn chia cho 2 đội. Mỗi đội được chia 5 gói làm phần thưởng và 1 gói Ban tổ chức giữ lại để liên hoan. Biết rằng dù chọn bất kì gói nào để giữ lại, Ban tổ chức luôn có thể chia 10 gói còn lại cho 2 đội mà tổng số viên kẹo trong 5 gói cho mỗi đội là bằng nhau. Chứng minh rằng 11 gói kẹo đó phải có số viên kẹo bằng nhau.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Sóc Trăng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Sóc Trăng. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Sóc Trăng : + Trường Trung học phổ thông H dự định tổ chức cho 315 học sinh về nguồn tại Di tích khu căn cứ Tỉnh ủy thuộc địa phận xã Mỹ Phước, huyện Mỹ Tú, tỉnh Sóc Trăng. Nếu dùng loại xe nhỏ chở một lượt hết số học sinh thì phải hợp đồng nhiều hơn khi dùng loại xe lớn là 2 chiếc, biết rằng loại xe nhỏ mỗi xe chở ít hơn loại xe lớn là 10 học sinh. Tính số xe nhỏ mà Trường Trung học phổ thông H cần hợp đồng (Biết rằng số học sinh được chở trên mỗi xe là như nhau). + Yêu cầu vẽ hình khi chứng minh: Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn tâm O. Các đường cao BE, CF cắt nhau tại H. a) Chứng minh AF.AB = AE.AC. b) Giả sử BAC = 60°, AB = 3 cm, AC = 4 cm. Tính diện tích tam giác ABC và diện tích tam giác AEF. c) Gọi M là trung điểm BC, tia MH cắt đường tròn (O) tại T, đường tròn ngoại tiếp tam giác BMF cắt đường thẳng AM tại điểm thứ hai là Q. Chứng minh rằng 6 điểm A, T, F, H, Q, E cùng nằm trên đường tròn. + Hai người cùng chơi trò chơi, khi bắt đầu chơi cả hai người chơi đều 0 điểm. Sau mỗi ván chơi người thắng được 2 điểm, người thua được 0 điểm; nếu hoà thì mỗi người chơi cùng được 1 điểm. Hỏi sau một số ván chơi có thể xảy ra trường hợp một người được 20 điểm và người kia được 23 điểm không? Giải thích?
Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 trường THPT chuyên ĐH Vinh - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2023 – 2024 trường THPT chuyên Đại học Vinh, tỉnh Nghệ An. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 trường THPT chuyên ĐH Vinh – Nghệ An : + Cho đa thức P(x) = x2 + bx + c có hai nghiệm nguyên. Biết rằng |c| =< 16 và |P(9)| là số nguyên tố. Tìm các hệ số b, c. + Cho đường tròn (O) đường kính AB. Đường thẳng ∆ tiếp xúc với (O) tại A, I là điểm cố định trên đoạn AB và CD là dây cung thay đổi của (O) luôn đi qua I. Các đường thẳng BC, BD cắt ∆ lần lượt tại M, N. a) Chứng minh rằng CDNM là tứ giác nội tiếp. b) Gọi K là giao điểm thứ hai của đường tròn ngoại tiếp tam giác BMN với đường thẳng AB. Chứng minh rằng KMCI là tứ giác nội tiếp và tích AM · AN không đổi. c) Gọi T là tâm đường tròn ngoại tiếp tứ giác CDNM. Tìm vị trí của CD sao cho độ dài đoạn thẳng BT nhỏ nhất. + Gọi M là tập hợp tất cả các số tự nhiên gồm 2 chữ số khác nhau. Tìm số nguyên dương k lớn nhất để tồn tại tập hợp con A có k phần tử của tập hợp M sao cho tích của A số bất kì thuộc tập hợp A đều chia hết cho 3.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 trường PTNK - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2023 – 2024 trường Phổ Thông Năng Khiếu, thành phố Hồ Chí Minh. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 trường PTNK – TP HCM : + Người ta tô màu mỗi ô của bảng hình vuông 4 × 4 bằng một trong hai màu đen hoặc trắng thỏa mãn các điều kiện sau: i. Số ô đen trên các hàng đều bằng nhau. ii. Số ô đen trên các cột đôi một khác nhau. a) Tính số ô đen trên mỗi hàng. b) Hai ô kề nhau trên một hàng hoặc một cột được gọi là “cặp tốt” nếu chúng được tô bằng hai màu khác nhau. Hỏi tổng số các “cặp tốt” tính theo tất cả các cột có thể lớn nhất là bao nhiêu? Hỏi tương tự cho các “cặp tốt” tính theo tất cả các hàng. + Cho m, n là các số nguyên không âm thỏa mãn m2 − n = 1. a) Đặt n2 – m = a. Chứng minh rằng a là số lẻ. b) Chứng minh rằng nếu a = 3.2^k + 1 với k là số nguyên dương thì k = 1. c) Chứng minh rằng a không thể là số chính phương. + Cho tam giác ABC. Gọi D, E, F là các tiếp điểm của đường tròn (I) nội tiếp tam giác ABC với BC, CA, AB. Từ chân đường phân giác ngoài L của góc BAC (L thuộc BC), kẻ tiếp tuyến LH đến đường tròn (I) (H thuộc (I), H khác D). a) Chứng minh rằng đường tròn ngoại tiếp tam giác ALH đi qua tâm nội tiếp I. b) Chứng minh BAD = CAH. c) AH cắt lại (I) tại K. Gọi G là trọng tâm tam giác KEF và J là giao điểm của DG với EF. Chứng minh KJ vuông góc EF. d) Gọi S là trung điểm BC, KJ cắt lại (I) tại R. Chứng minh rằng EF, IR và AS đồng quy.