Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển chọn các bài toán phương trình vô tỉ - Trần Quốc Việt (Diễn đàn K2PI)

Tài liệu gồm 97 trang tuyển chọn các bài toán phương trình vô tỷ hay và đặc sắc có lời giải chi tiết, tài liệu được tổng hợp bởi tác giả Trần Quốc Việt. Kỳ thi THPT Quốc Gia vừa qua với nhiều thay đổi lớn trước ngưỡng của đổi mới Giáo Dục. Chúng ta cũng đã được thấy được sự thay đổi đột phá trong đề thi môn Toán nói riêng. Về cấu trúc đề thi đã được phân loại gồm 60% phần dễ đủ cho học sinh thi tốt nghiệp và 40% phần khó và cực khó nhằm phân loại mạnh học sinh để xét tuyển vào các trường Đại học- Cao đẳng. Trong đó nhóm câu phương trình, hệ phương trình không còn dừng lại ở mức độ dễ kiếm điểm như đề thi những năm trước, mức độ khó của nhóm câu này nằm ở con điểm 9 nếu ta chinh phục được nó. Và nói riêng đề thi Toán 2015 thì là một câu phương trình vô tỷ chỉ mới xuất hiện lại đây sau mấy năm trước đó đề thi đều ra hệ phương trình nên xu hướng học sinh bây giờ theo học phương trình vô tỷ khá nhiều. Và đối với những người đam mê Toán luôn muốn phát triển thì họ chả bao giờ ngừng nghỉ học cho dù là nó có liên quan đến thi cử hay không. [ads] Vì vậy mà tiếp nối sự thành công của TOPIC Phương trình vô tỷ 2014 của thầy Phạm Kim Chung tại diễn đàn Toán -THPT K2pi thì TOPIC Phương trình vô tỷ 2015 của anh Nguyễn Duy Hồng cũng rất thành công khi quét kỹ hết các dạng toán thường gặp của phương trình vô tỷ, mở ra được cái nhìn chuyên sâu về mọi bài toán giúp được một phần nào đó cho các thí sinh vượt qua được kỳ thi. Nay tôi tổng hợp các bài toán lại thành tài liệu tiếp tục phục vụ việc ôn thi kỳ thi THPT Quốc Gia tiếp theo. Mong đây sẽ là tài liệu bổ ích cho việc ôn thi của các bạn.

Nguồn: toanmath.com

Đọc Sách

Tuyển chọn các bài toán đặc sắc về hệ phương trình và hình phẳng Oxy - Đặng Việt Hùng
Tài liệu tuyển chọn các bài toán đặc sắc về hệ phương trình và hình học tọa độ phẳng Oxy được biên soạn bởi thầy giáo Đặng Việt Hùng. Tài liệu gồm 32 trang được chia làm 2 phần: + Phần 1 gồm 30 bài toán hệ phương trình. + Phần 2 gồm 22 bài toán hình học Oxy. Tất cả các bài toán đều có lời giải chi tiết. [ads]
Phương pháp ép tích giải phương trình vô tỉ - Phạm Quốc Đông
Tài liệu gồm 20 trang giới thiệu phương pháp ép tích trong việc giải phương trình vô tỉ, tài liệu được biên soạn bởi tác giả Phạm Quốc Đông. Phương pháp ép tích là việc biến đổi một phương trình hay một bất phương trình về các phương trình tích để từ đó giải các phương trình cơ bản. Phương pháp ép tích hoàn toàn dựa và việc các bạn tìm ra biểu thức ghép với căn thức phù hợp nhất, đồng thời áp dụng hằng đẳng thức cơ bản mà chúng ta đã được học ở chương trình lớp 7 để xử lí các phương trình. Công việc tìm biểu thức ghép với căn thức cũng chính là tìm biểu thức liên hợp như trong phương pháp liên hợp mà các bạn được học. Việc tìm biểu thức phù hợp để liên hợp sẽ được tôi phân tích và hướng dẫn cụ thể cho từng loại. [ads] Thực chất của phương pháp ép tích cũng không có gì mới, nó tương tự như phương pháp liên hợp hay đặt ẩn phụ không hoàn toàn nhưng nó lại có những ưu việt riêng của nó. Và nó sẽ đáp ứng được tất cả phương trình chứa một căn thức một cách nhanh gọn. Việc chứng minh lượng còn lại cũng sẽ không còn phức tạp đối với phương pháp ép tích. Nội dung tài liệu : + Cơ sở phương pháp ép tích + Hướng dẫn tìm nghiệm và nhân tử chung của phương trình vô tỉ + Hướng dẫn tìm biểu thức liên hợp của phương trình vô tỉ + Áp dụng phương pháp ép tích như thế nào để giải quyết các phương trình vô tỉ + Bài tập tự luyện
Tuyệt kĩ bấm máy Casio giải phương trình - hệ phương trình - bất phương trình
Tài liệu gồm 24 trang hướng dẫn tuyệt kỹ bấm máy Casio để tìm hướng giải và giải nhanh các bài toán phương trình, hệ phương trình và bất phương trình. Các dạng toán có trong tài liệu: + Dạng 1. Các mối quan hệ được rút ra từ một phương trình + Dạng 2. Các mối quan hệ được rút ra từ kết hợp hai phương trình [ads] Đây là một phương pháp giúp định hướng nhanh mối quan hệ giữa x và y, rất thích hợp áp dụng với các phương pháp phân tích thành nhân tử, phương pháp hàm số và đánh giá … Đặc biệt là khả năng sử dụng để giải phương trình, bất phương trình vô tỷ, phân tích phương trình bậc 4 thành nhân tử. Hy vọng sau tài liệu này các bạn sẽ có cái nhìn khác về hệ phương trình và có thể dễ dàng giải quyết các bài toán tương tự.
Sáng tác phương trình và hệ phương trình - Nguyễn Tài Chung
Tài liệu gồm 63 trang giới thiệu một số phương pháp sáng tác và giải các bài toán về phương trình – hệ phương trình. + Xây dựng một số phương trình được giải bằng cách đưa về hệ. + Sử dụng công thức lượng giác để sáng tác các phương trình đa thức bậc cao. + Sử dụng các đồng nhất thức đại số có xuất sứ từ các hàm lượng giác hypebôlic để sáng tác các phương trình đa thức bậc cao. + Sáng tác một số phương trình đẳng cấp đối với hai biểu thức. + Xây dựng phương trình từ các đẳng thức. [ads] + Xây dựng phương trình từ các hệ đối xứng loại II. + Xây dựng phương trình vô tỉ dựa vào tính đơn điệu của hàm số. + Xây dựng phương trình vô tỉ dựa vào các phương trình lượng giác. + Sử dụng căn bậc n của số phức để sáng tạo và giải hệ phương trình. + Sử dụng bất đẳng thức lượng giác trong tam giác để sáng tạo ra các phương trình lượng giác hai ẩn và xây dựng thuật giải. + Sử dụng hàm ngược để sáng tác một số phương trình, hệ phương phương trình.