Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kì 2 (HK2) lớp 9 môn Toán năm 2019 2020 trường THCS Nguyễn Hiền TP HCM

Nội dung Đề kiểm tra học kì 2 (HK2) lớp 9 môn Toán năm 2019 2020 trường THCS Nguyễn Hiền TP HCM Bản PDF Đề kiểm tra học kỳ 2 môn Toán lớp 9 năm học 2019 - 2020 trường THCS Nguyễn Hiền TP HCM do Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh là một tài liệu quan trọng giúp học sinh ôn tập và kiểm tra kiến thức của mình. Đề thi bao gồm các câu hỏi thú vị, phân tích chi tiết và hướng dẫn chấm điểm cụ thể, giúp các em có thể tự tin làm bài và kiểm tra kết quả của mình sau khi hoàn thành đề thi.

Một trong các câu hỏi trong đề kiểm tra là về việc mẹ bạn Xuân muốn đổi tiền thành hai loại tiền 50000 đồng và 20000 đồng để lì xì các cháu nhỏ. Sau khi đếm tiền mẹ bạn Xuân có tổng cộng 70 tờ tiền và câu hỏi đặt ra là mỗi loại tiền có bao nhiêu tờ. Câu hỏi này giúp học sinh rèn luyện kỹ năng giải phương trình và tính toán số tiền cụ thể.

Câu hỏi tiếp theo liên quan đến việc tính tiền điện trong tháng của gia đình bạn Minh dựa trên số kWh sử dụng và các quy định về giá bán lẻ điện được Bộ công thương quy định. Học sinh cần tính toán tổng số tiền điện cần thanh toán trong tháng dựa trên các yếu tố cụ thể như thời gian sử dụng, giá bán lẻ đặc biệt trong mùa dịch Covid-19.

Cuối cùng là một câu hỏi liên quan đến việc tính diện tích phần giấy trang trí trên cây quạt xòe, đòi hỏi học sinh áp dụng kiến thức về hình học và tính toán diện tích một cách chính xác.

Như vậy, đề kiểm tra học kỳ 2 môn Toán lớp 9 năm học 2019 - 2020 trường THCS Nguyễn Hiền TP HCM không chỉ là cơ hội để học sinh kiểm tra kiến thức mà còn là dịp để rèn luyện kỹ năng làm toán, tư duy logic và giải quyết vấn đề. Đề thi cung cấp một bài học thực tế và bổ ích cho học sinh, giúp họ phát triển toàn diện.

Nguồn: sytu.vn

Đọc Sách

Đề thi HK2 Toán 9 năm 2020 - 2021 phòng GDĐT Hai Bà Trưng - Hà Nội
Đề thi HK2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Hai Bà Trưng – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào thứ Năm ngày 15 tháng 04 năm 2021. Trích dẫn đề thi HK2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Hai Bà Trưng – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một mảnh vườn hình chữ nhật có chu vi bằng 34 m. Nếu tăng chiều dài thêm 2 m và tăng chiều rộng thêm 3 m thì diện tích tăng thêm 50 m2. Tính chiều dài và chiều rộng của mảnh vườn. + Một thuyền đánh cá chuẩn bị 10 thùng dầu để ra khơi, mỗi thùng là một hình trụ có đường kính đáy là 0,6m, chiều cao là 1,5m. Hỏi thuyền đó đã chuẩn bị bao nhiêu lít dầu? (bỏ qua độ dày của vỏ thùng). + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x^2 và đường thẳng (d): y = (2m – 1)x – m2 + 2 (m là tham số). 1) Tìm tọa độ giao điểm của đường thẳng (d) và parabol (P) khi m = 2. 2) Tìm giá trị của tham số m để (d) cắt (P) tại hai điểm phân biệt có hoành độ thỏa mãn.
Đề thi cuối kỳ 2 Toán 9 năm 2020 - 2021 phòng GDĐT Long Biên - Hà Nội
Đề thi cuối kỳ 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Long Biên – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào thứ Sáu ngày 16 tháng 04 năm 2021. Trích dẫn đề thi cuối kỳ 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Long Biên – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc lập hệ phương trình: Đáp ứng nhu cầu vận chuyển hàng hóa cho người dân trong đợt dịch Covid-19 vừa qua, một tàu thủy chở hàng đi từ bến A đến bến B, rồi quay lại bến A. Thời gian cả đi và về là 2 giờ 30 phút (không tính thời gian nghỉ). Hãy tìm vận tốc của tàu thủy trong nước yên lặng, biết rằng khoảng cách giữa hai bến sông A và B là 24 km và vận tốc của nước chảy là 4 km/h. + Vẽ đồ thị của hàm số y = -2×2. + Cho phương trình x + (1 – m)x – m = 0 (với x là ẩn số, m là tham số). Xác định các giá trị của m để phương trình có hai nghiện phân biệt thoả mãn điều kiện.
Đề thi học kỳ 2 Toán 9 năm 2020 - 2021 phòng GDĐT Cầu Giấy - Hà Nội
Sáng thứ Sáu ngày 16 tháng 04 năm 2021, phòng Giáo dục và Đào tạo quận Cầu Giấy, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 9 giai đoạn cuối học kì 2 năm học 2020 – 2021. Đề thi học kỳ 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Cầu Giấy – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thơi gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi học kỳ 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Cầu Giấy – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Trong kì thi tuyển sinh vào lớp 10, hai trường A và B có tất cả 750 học sinh dự thi. Trong số học sinh trường A dự thi có 80% số học sinh trúng tuyển, còn trong số học sinh trường B dự thi có 70% số học sinh trúng tuyển. Biết tổng số học sinh trúng tuyển của cả hai trường là 560 học sinh. Tính số học sinh dự thi của mỗi trường? + Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x – m2 + 2m (m là tham số). a. Tìm tọa độ giao điểm của parabol (P) và đường thẳng (d) khi m = 2. b. Tìm m để đường thẳng (d) và parabol (P) cắt nhau tại hai điểm phân biệt có hoành độ x1; x2 là hai số đối nhau. + Cho nửa tròn (O; R) đường kính AB và điểm M thuộc nửa đường tròn đó (M khác A và B). Trên dây BM lấy điểm N (N khác B và M), tia AN cắt nửa đường tròn (O) tại điểm thứ hai là P. Tia AM và tia BP cắt nhau tại Q. 1) Chứng minh: bốn điểm M, N, P, Q cùng thuộc một đường tròn. 2) Chứng minh: MAB và MNQ đồng dạng. 3) Chứng minh MO là tiếp tuyến của đường tròn ngoại tiếp tam giác MNQ. 4) Dựng hình bình hành ANBC. Chứng minh QB = QC.sin QPM.
Đề thi học kỳ 2 Toán 9 năm 2020 - 2021 phòng GDĐT Đống Đa - Hà Nội
Đề thi học kỳ 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Đống Đa – Hà Nội có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kỳ 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Đống Đa – Hà Nội : + Giải toán bằng cách lập phương trình hoặc hệ phương trình: Một mảnh đất hình chữ nhật có chiều dài lớn hơn chiều rộng 3m. Nếu tăng chiều dài thêm 2m và giảm chiều rộng 1m thì diện tích mảnh đất không đổi. Tính chiều dài và chiều rộng ban đầu của mảnh đất. + Một hình trụ có đường kính đáy là 1,2m và chiều cao là 1,8m. Tính thể tích hình trụ đó (kết quả làm tròn đến số thập phân thứ nhất, lấy π ≈ 3,14). + Cho phương trình: x2 – 2x + m – 3 = 0 (m là tham số). 1) Giải phương trình khi m = -5. 2) Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn điều kiện x1 = 3×2.