Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập trắc nghiệm về hàm số và các bài toán liên quan - Trần Duy Thúc

Tài liệu phân dạng bài tập trắc nghiệm về hàm số và các bài toán liên quan do thầy Trần Duy Thúc biên soạn, các bài toán đều có đáp án. Lời giới thiệu của tác giả : Chào các Em học sinh thân mến! Chắc hẳn các Em cũng đã nắm được thông tin rằng năm 2017 môn Toán sẽ thi theo hình thức trắc nghiệm. Thông tin trên chắc Thầy sẽ không đề cặp nhiều ở đây nữa. Điều cần nhất bây giờ đó là các Em phải tập trung học thật kĩ. Nếu như trước kia, thi tự luận thì các Em chỉ cần hiểu lý thuyết, nắm được các dạng bài tập và giải được các bài tập là đã tốt. Tuy nhiên, với hình thức thi trắc nghiệm thì bấy nhiêu là chưa đủ. Chẳng những các Em phải nắm thật chắc lý thuyết, nắm được các dạng bài tâp, biết giải bài tập mà còn phải giải thật nhanh. Nếu như thi tự luận mỗi dạng em làm khoảng 10 bài đã hiểu được thì bây giờ Em phải làm 100 bài , thậm chí 200 bài và hơn nữa. Vì không phải chỉ biết giải, chỉ hiểu mà phải giải nhanh nhất, lựa chọn phương pháp tiết kiệm thời gian nhất. Nhằm đáp ứng câu trúc đề thi mới của Bộ và nhằm cung cấp lượng bài tập đáng kể cho các Em luyện tập Thầy biên soạn quyển tài liệu Các dạng bài tập trắc nghiệm về Hàm Số. Theo cấu trúc dự kiến của Bộ thì nội dung này chiếm 12 câu. Thầy tin rằng với tài liệu này có thể giúp các Em nắm được từ đơn giản nhất đến các bài toán phức tạp và sẽ hầu như không có dạng bài tập nào về Khảo Sát Hàm số nằm ngoài quyển tài liệu này. Tuy nhiên, việc các Em đọc thêm nhiều tài liệu đó là một điều Thầy rất vui, rất khuyến khích. Để các Em thuận lợi trong việc ghi nhớ các dạng bài tập và luyện tập đến mức nhuần nhiễn, trong vòng 30 giây xong bài Toán. [ads] Thầy sẽ chia tài liệu ra thành 7 phần: + Phần 1. Các bài toán liên quan đến tính tăng đến tính tăng giảm của hàm số. + Phần 2. Các bài toán liên quan đến cực trị của hàm số. + Phần 3. Các bài toán về giá trị lớn nhất và giá trị nhỏ nhất của hàm số. + Phần 4. Các bài toán về tiếp tuyến với đồ thị của hàm số. + Phần 5. Các bài toán sự tương giao. + Phần 6. Một số bài toán khác. + Phần 7. Bài tập tổng hợp. + Phần 8. Hướng dẫn và đáp số.

Nguồn: toanmath.com

Đọc Sách

Bài tập chọn lọc tọa độ không gian Oxyz - Lê Minh Tâm
Tài liệu gồm 636 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tuyển tập các bài tập chọn lọc chuyên đề phương pháp tọa độ trong không gian Oxyz, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 rèn luyện khi học chương trình môn Toán 12 phần Hình học chương 3. MỤC LỤC : PHẦN ĐỀ BÀI. Chủ đề 1. Tọa độ không gian Oxyz Trang 2. Chủ đề 2. Phương trình mặt cầu Trang 21. Chủ đề 3. Phương trình mặt phẳng Trang 57. Chủ đề 4. Phương trình đường thẳng Trang 85. Chủ đề 5. Vị trí tương đối Trang 141. PHẦN ĐÁP ÁN VÀ LỜI GIẢI CHI TIẾT. Chủ đề 1. Tọa độ không gian Oxyz Trang 2. Chủ đề 2. Phương trình mặt cầu Trang 68. Chủ đề 3. Phương trình mặt phẳng Trang 174. Chủ đề 4. Phương trình đường thẳng Trang 261. Chủ đề 5. Vị trí tương đối Trang 434.
Bài tập trắc nghiệm hình học Oxyz vận dụng cao
Tài liệu gồm 61 trang, tuyển chọn các bài tập trắc nghiệm hình học Oxyz vận dụng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12 phần Hình học chương 3: Phương Pháp Tọa Độ Trong Không Gian. Phần 1. Các bài toán cơ bản ở mức vận dụng. Phần 2. Cực trị trong hình học Oxyz. Phần 3. Các bài toán về mặt cầu. Phần 4. Bài toán cực trị sử dụng tâm tỷ cự. Phần 5. Bài toán hỏi số mặt phẳng, số mặt cầu. Phần 6. Bài toán quỹ tích.
Các dạng bài tập phương pháp tọa độ trong không gian - Nguyễn Hoàng Việt
Tài liệu gồm 273 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tuyển tập các dạng bài tập trắc nghiệm chủ đề phương pháp tọa độ trong không gian Oxyz, giúp học sinh lớp 12 rèn luyện khi học chương trình Hình học 12 chương 3. 1 HỆ TỌA ĐỘ TRONG KHÔNG GIAN. 1. Bài toán liên quan đến véc-tơ và độ dài đoạn thẳng. 2. Bài toán liên quan đến trung điểm tọa độ trọng tâm. 3. Bài toán liên quan đến hai vé-tơ bằng nhau. 4. Hai véc-tơ cùng phương, ba điểm thẳng hàng. 5. Nhóm bài toán liên quan đến hình chiếu, điểm đối xứng của điểm lên trục, lên mặt phẳng tọa độ. 6. Nhóm bài toán liên quan đến tích vô hướng của hai véc-tơ. 7. Nhóm bài toán liên quan đến tích có hướng của hai véc-tơ. 8. Xác định các yếu tố cơ bản của mặt cầu. 9. Viết phương trình mặt cầu loại cơ bản. 2 PHƯƠNG TRÌNH MẶT PHẲNG. 1. Véc-tơ pháp tuyến – Véc-tơ chỉ phương. 2. Phương trình tổng quát của mặt phẳng. 3. Phương trình mặt phẳng theo đoạn chắn. 4. Các mặt phẳng tọa độ (thiếu cái gì, cái đó bằng 0). 5. Khoảng cách. 6. Góc. 7. Vị trí tương đối. 8. Các trường hợp đặc biệt của mặt phẳng. 9. Xác định các yếu tố của mặt phẳng. 10. Khoảng cách, góc và vị trí tương đối. 11. Viết phương trình mặt phẳng (cần tìm một điểm đi qua + VTPT). 12. Viết phương trình mặt phẳng đi qua một điểm và có cặp véc-tơ chỉ phương. 13. Viết phương trình mặt phẳng (P) qua điểm A, B và vuông góc với mặt phẳng (Q). 14. Viết phương trình mặt phẳng (P) qua M và vuông góc với hai mặt phẳng (α), (β). 15. Viết phương trình mặt phẳng đoạn chắn. 16. Một số bài toán viết phương trình mật phẳng liên quan đến khoảng cách cơ bản. 17. Viết phương trình mặt phẳng (P) đi qua M và qua giao tuyến của hai mặt phẳng (α), (β). 3 PHƯƠNG TRÌNH ĐƯỜNG THẲNG. 1. Kiến thức cơ bản cần nhớ. 2. Xác định các yếu tố cơ bản của đường thẳng. 3. Góc. 4. Khoảng cách. 5. Vị trí tương đối. 6. Viết phương trình đường thẳng. 7. Hình chiếu, điểm đối xứng và bài toán liên quan (vận dụng cao). 8. Bài toán cực trị và một số bài toán khác (vận dụng cao).
Bài tập phương pháp tọa độ trong không gian - Diệp Tuân
Tài liệu gồm 383 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng toán và tuyển chọn các bài tập trắc nghiệm – tự luận chuyên đề phương pháp tọa độ trong không gian Oxyz, giúp học sinh rèn luyện khi học chương trình Hình học 12 chương 3 và ôn thi tốt nghiệp THPT môn Toán. BÀI 1 . HỆ TỌA ĐỘ TRONG KHÔNG GIAN OXYZ. + Dạng toán 1. Xác định tọa độ của điểm, tọa độ vectơ, tích vô hướng. + Dạng toán 2. Ứng dụng của tích có hướng. BÀI 2 . PHƯƠNG TRÌNH MẶT PHẲNG. + Dạng toán 1. Lập phương trình mặt phẳng khi biết một điểm và một véc tơ pháp tuyến. + Dạng toán 2. Lập phương trình mặt phẳng khi biết một điểm, khoảng cách, góc và chưa có véc tơ pháp tuyến. + Dạng toán 3. Vị trí tương đối của hai mặt phẳng, khoảng cách và góc của hai mặt phẳng. + Dạng toán 4. Tìm hình chiếu của điểm xuống mặt phẳng, tìm điểm đối xứng. + Dạng toán 5. Bài toán cực trị (giá trị lớn nhất và nhỏ nhất). BÀI 3 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. + Dạng toán 1. Viết phương trình đường thẳng. + Dạng toán 2. Hình chiếu của điểm, của đường thẳng lên đường thẳng, mặt phẳng. + Dạng toán 3. Viết phương tình đường phân giác trong và ngoài của tam giác, của hai đường thẳng. + Dạng toán 4. Một số bài toán liên quan đến góc, khoảng cách và tương giao. BÀI 4 . PHƯƠNG TRÌNH MẶT CẦU. + Dạng toán 1. Xác định tâm và bán kính mặt cầu cho trước. + Dạng toán 2. Viết phương trình mặt cầu thỏa mãn điều kiện cho trước. BÀI 5 . ỨNG DỤNG PHƯƠNG PHÁP TỌA ĐỘ.