Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào năm 2022 trường THPT chuyên KHTN Hà Nội

Nội dung Đề tuyển sinh vào năm 2022 trường THPT chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh vào năm 2022 trường THPT chuyên KHTN Hà Nội Đề tuyển sinh vào năm 2022 trường THPT chuyên KHTN Hà Nội Sytu trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 năm 2022 của trường THPT chuyên Khoa học Tự nhiên, Đại học Quốc gia Hà Nội. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022 và đề thi bao gồm đề Toán điều kiện, đề Toán chung và đề Toán vòng 1 Đề thi được biên soạn bởi CLB Toán Lim, gồm các thầy cô: Nguyễn Duy Khương, Nguyễn Hoàng Việt, Trịnh Đình Triển, Khôi Hà, Nguyễn Văn Hoàng và Nguyễn Khang. Đề thi có đáp án và lời giải chi tiết để thí sinh tham khảo. Dưới đây là một số câu hỏi trích dẫn từ đề tuyển sinh: Trên bàn có 8 hộp rỗng, mỗi lần thêm bi vào các hộp theo quy tắc nhất định. Hỏi số lần thêm bi ít nhất để nhận được số bi ở 8 hộp đều là 8 số tự nhiên liên tiếp? Cho hình chữ nhật ABCD nội tiếp trong đường tròn (O). Chứng minh rằng BE cắt CF tại một điểm trên đường tròn (O), và điểm D, M, N thẳng hàng. Tìm tất cả các cặp số nguyên (x;y) thỏa mãn đẳng thức: 25y^2 + 354x + 60 = 36x^2 + 305y + (5y − 6x)^2022. Hãy chuẩn bị kỹ lưỡng và tự tin để đối phó với những thách thức trên kỳ thi tuyển sinh sắp tới! Chúc các em học sinh thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán trường THPT Đào Duy Từ - Thanh Hóa
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THPT Đào Duy Từ – Thanh Hóa gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đoạn thẳng AB và C là một điểm nằm giữa A và B. Trên cùng một nửa mặt phẳng bờ AB vẽ hai tia Ax  By vuông góc với AB. Trên tia Ax lấy một điểm I (I khác A ), đường thẳng vuông góc với tia CI tại C cắt tia By tại K. Đường tròn đường kính IC cắt IK tại điểm thứ hai P 1) Chứng minh bốn điểm C, P, K, B cùng thuộc một đường tròn 2) Chứng minh AI.BK = AC.BC 3) Cho biết A,B,I cố định. Xác định vị trí điểm C trên đoạn thẳng AB sao cho diện tích hình thang vuông ABKI là lớn nhất [ads] + Giải phương trình (a – 1)x^2 – 4x + 3 = 0 trong mỗi trường hợp sau: a) Khi a = 1 b) Khi a = 2
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đồng Nai
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Đồng Nai gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một đội xe dự định chở 120 tấn hàng. Để tăng sự an toàn nên đến khi thực hiện, đội xe được bổ sung thêm 4 chiếc xe, lúc này số tấn hàng của mỗi xe chở ít hơn số tấn hàng của mỗi xe dự định chở là 1 tấn. Tính số tấn hàng của mỗi xe dự định chở, biết số tấn hàng của mỗi xe chở khi dự định là bằng nhau, khi thực hiện là bằng nhau. + Cho tam giác ABC có ba đường cao AD, BE, CF cắt nhau tại H. Biết ba góc CAB, ABC, BCA đều là góc nhọn. Gọi M là trung điểm của đoạn AH 1) Chứng minh tứ giác AEHF nội tiếp đường tròn 2) Chứng minh CE.CA = CD.CB 3) Chứng minh EM là tiếp tuyến của đường tròn ngoại tiếp tam giác BEF 4) Gọi I và J tương ứng là tâm đường tròn nội tiếp hai tam giác BDF và EDC. Chứng minh 2 góc DIJ và DFC bằng nhau [ads] + Cho hai hàm số y = -1/2x^2 và y = x – 4 có đồ thị lần lượt là (P) và (d) 1) Vẽ hai đồ thị (P) và (d) trên cùng một mặt phẳng tọa độ 2) Tìm tọa độ giao điểm của hai đồ thị (P) và (d)
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 2)
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 2 – Dùng riêng cho học sinh chuyên Toán và chuyên Tin) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O) bán kính R và một điểm M nằm ngoài (O). Kẻ hai tiếp tuyến MA, MB tới đường tròn (O) (A, B là hai tiếp điểm). Trên đoạn thẳng AB lấy điểm C (C khác A, C khác B). Gọi I; K là trung điểm MA, MC. Đường thẳng KA cắt đường tròn (O) tại điểm thứ hai D 1. Chứng minh KO^2 – KM^2 = R^2 2. Chứng minh tứ giác BCDM là tứ giác nội tiếp 3. Gọi E là giao điểm thứ hai của đường thẳng MD với đường tròn (O) và N là trung điểm KE đường thẳng KE cắt đường tròn (O) tại điểm thứ hai F. Chứng minh rằng bốn điểm I, A, N, F cùng nằm trên một đường tròn [ads] + Xét hình bên: Ta viết các số 1, 2, 3, 4 … 9 vào vị trí của 9 điểm trong hình vẽ bên sao cho mỗi số chỉ xuất hiện đúng một lần và tổng ba số trên một cạnh của tam giác bằng 18. Hai cách viết được gọi là như nhau nếu bộ số viết ở các điểm (A;B;C;D;E;F;G;H;K) của mỗi cách là trùng nhau. Hỏi có bao nhiêu cách viết phân biệt? Tại sao?
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 1)
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 1 – Dùng cho mọi thí thi vào trường chuyên) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Anh nam đi xe đạp từ A đến C. Trên quãng đường AB ban đầu (B nằm giữa A và C). Anh Nam đi với vận tốc không đổi a (km/h) và thời gian đi từ A đến B là 1,5 giờ. Trên quãng đường BC còn lại anh Nam đi chậm dần đều với vận tốc tại thời điểm t (tính bằng giờ) kể từ B là v = -8t + a (km/h). Quãng đường đi được từ B đến thời điểm t đó là S = -4t^2 + at. Tính quãng đường AB biết rằng đến C xe dừng hẳn và quãng đường BC dài 16km. [ads] + Cho đường tròn (O) bán kính R ngoại tiếp tam giác ABC có ba góc nhọn. Các tiếp tuyến của đường tròn (O) tại các điểm B, C cắt nhau tại điểm P. Gọi D, E tương ứng là chân đường các đường vuông góc kẻ từ P xuống các đường thẳng AB và AC và M là trung điểm cạnh BC 1. Chứng minh góc MEP = góc MDP 2. Giả sử B, C cố định và A chạy trên (O) sao cho tam giác ABC luôn là tam giác có ba góc nhọn. Chứng minh đường thẳng DE luôn đi qua một điểm cố định 3. Khi tam giác ABC đều. Hãy tính diện tích tam giác ADE theo R