Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải nhanh bài toán số phức bằng máy tính Casio - Nguyễn Việt Anh

Tài liệu gồm 12 trang hướng dẫn các phương pháp giải nhanh bài toán số phức bằng máy tính Casio – Vinacal kèm theo các bài tập rèn luyện, tài liệu được biên soạn bởi tác giả Nguyễn Việt Anh, đây là các kỹ thuật giải toán mà các em nên tìm hiểu để phát huy tối đa công dụng của máy tính cầm tay trong giải toán số phức, giúp tìm ra hướng giải và tiết kiệm thời gian. A. Các phép tính thông thường, tính moldun, argument, conjg của 1 số phức hay 1 biểu thức số phức và tính số phức có mũ cao. Bài toán tổng quát : Cho Z = z1.z2 – z3.z4/z5. Tìm z và tính modun, argument và số phức liên hợp của số phức Z. Phương pháp giải : + Để máy tính ở chế độ Deg không để dưới dạng Rad và vào chế độ số phức Mode 2. + Khi đó chữ “i” trong phần ảo sẽ là nút “ENG” và ta thực hiện bấm máy như 1 phép tính bình thường. Tính Moldun, Argument và số phức liên hợp của số phức Z: + Moldun: Ấn shift + hyp. Xuất hiện dấu trị tuyệt đối thì ta nhập biểu thức đó vào trong rồi lấy kết quả. + Tính Arg ấn Shift 2 chọn 1. Tính liên hợp ấn shift 2 chọn 2. B. Tìm căn bậc 2, chuyển số phức về dạng lượng giác và ngược lại. 1. Tìm căn bậc 2 của số phức và tính tổng hệ số của căn đó. Bài toán tổng quát : Cho số phức z thỏa mãn z = f(a, bi). Tìm 1 căn bậc 2 của số phức và tính tổng, tích hoặc 1 biểu thức của hệ số. Phương pháp giải : Cách 1: Đối với việc tìm căn bậc 2 của số phức cách nhanh nhất là ta bình phương các đáp án xem đáp án nào trùng số phức đề cho. Cách 2: Không vào chế độ Mode 2. Ta để máy ở chế độ Mode 1. + Ấn shift + sẽ xuất hiện và ta nhập Pol(phần thực, phần ảo). Lưu ý dấu “,” là shift) sau đó ấn =. + Ấn tiếp Shift – sẽ xuất hiện và ta nhập Rec(√X, Y:2) sau đó ấn bằng ta sẽ ra lần lượt là phần thực và phần ảo của số phức. 2. Đưa số phức về dạng lượng giác và ngược lại. Bài toán tổng quát : Tìm dạng lượng giác (bán kính, góc lượng giác) của số phức thỏa mãn z = f(a, bi). Phương pháp giải : + Ấn shift chọn 4 (r < θ) sau khi nhập số phức. + Ấn = sẽ ra kế quả a < b trong đó r = a, góc = b. Chuyển từ lượng giác về số phức: chuyển về radian: + Nhập dạng lượng giác của số phức dưới dạng: bán kính < góc (với < là shift (-)). + Ấn shift 2 chọn 4 (a = bi) và lấy kết quả. 3. Các phép toán cơ bản hoặc tính 1 biểu thức lượng giác của số phức. Làm tương tự như dạng chính tắc của số phức. [ads] C. Phương trình số phức và các bài toán liên quan. 1. Phương trình không chứa tham số. Bài toán tổng quát : Cho phương trình az^2 + bz + c = 0. Phương trình có nghiệm (số nghiệm) là? Phương pháp giải : + Dùng cho máy Vinacal: Mode 2 vào chế độ phức và giải phương trình số phức như phương trình hàm số như bình thường và nhân được nghiệm phức. + Đối với Casio fx: Nhiều phương trình có nghiệm thực nên cách tốt nhất ta sẽ nhập phương trình đề cho vào máy tính và thực hiện Calc đáp án để tìm ra đáp án. 2. Phương trình tìm tham số. Bài toán tổng quát : Cho phương trình az^2 + bz + c = 0. Biết phương trình có nghiệm zi = Ai. Tìm a, b, c. Phương pháp giải : + Mode 2 và lần lượt thay các hệ số ở đáp án vào đề. + Dùng Mode 5 để giải phương trình nếu phương trình nào ra nghiệm như đề cho thì đó là đáp án đúng. D. Tìm số phức thỏa mãn điều kiện phức tạp và tính tổng, tích … hệ số của số phức (Ngoài cách hỏi trên còn có thể hỏi: Tìm phần thực, phần ảo hay modun … của số phức thỏa mãn điều kiện đề bài). Bài toán tổng quát : Cho số phức z = a + bi thỏa mã điều kiện (phức tạp kèm cả liên hợp …). Tìm số phức z? Phương pháp giải : + Nhập điều kiện đề cho vào Casio. Lưu ý thay z = a + bi và liên hợp của z = a – bi. + Calc a = 1000 và b = 100. + Sau khi ra kết quả là : X + Yi ta sẽ phân tích X và Y theo a và b để được 2 phương trình bậc nhất 2 ẩn để giải tìm ra a và b. + Lưu ý: Khi phân tích ưu tiên cho hệ số a nhiều nhất có thể. + Sau khi tìm được a, b ta làm nốt yêu cầu của đề. E. Tìm tập hợp biểu diễn của số phức thỏa mãn điều kiện và hình học số phức. Bài toán tổng quát : Trên mặt phẳng hệ trục tọa độ Oxy tìm tập hợp biểu diễn của số phức z thỏa mã điều kiện. Phương pháp giải : Ưu tiên việc sử dụng 2 máy tính để giải: + Máy thứ 1 ta nhập điều kiện của đề cho với z và liên hợp z dạng tổng quát. + Máy thứ 2 lần lượt các đáp án. Ta lấy 2 điểm thuộc các đáp án. + Calc 2 điểm vừa tìm vào điều kiện. Cái nào kết quả ra 0 thì đấy là đáp án đúng. F. Cặp số (x, y) thỏa mã điều kiện phức, số số phức phù hợp với điều kiện. Phương pháp giải : + Mode 2 và nhập điều kiện đề cho vào Casio, chuyển hết về 1 vế. + Calc các đáp án. Đáp án nào ra kết quả là 0 thì đó là đáp án đúng.

Nguồn: toanmath.com

Đọc Sách

20 kĩ thuật chinh phục vận dụng cao số phức - Hoàng Xuân Nhàn
Tài liệu gồm 151 trang, được biên soạn bởi thầy giáo Hoàng Xuân Nhàn, hướng dẫn 20 kĩ thuật chinh phục bài toán vận dụng cao số phức trong chương trình Giải tích 12 chương 4. MỤC LỤC : TÓM TẮT KIẾN THỨC TRỌNG YẾU – Trang 01. CHỦ ĐỀ 01 . SỐ PHỨC VÀ CÁC PHÉP TOÁN – Trang 09. + Dạng 1. Tính toán, rút gọn số phức dựa vào qui luật dãy số – Trang 09. + Dạng 2. Lập phương trình, hệ phương trình xác định số phức – Trang 12. + Dạng 3. Phương pháp lấy mô-đun hai vế đẳng thức – Trang 15. + Dạng 4. Phương pháp tạo số phức liên hợp – Trang 17. + Dạng 5. Phương pháp chuẩn hóa số phức – Trang 21. Bài tập trắc nghiệm thực hành chủ đề 1 – Trang 24. Hướng dẫn giải bài tập trắc nghiệm chủ đề 1 – Trang 28. CHỦ ĐỀ 02 . PHƯƠNG TRÌNH SỐ PHỨC – Trang 42. Tóm tắt lí thuyết – Trang 42. + Dạng 1. Giải phương trình số phức bậc hai, bậc ba, bậc bốn – Trang 45. + Dạng 2. Phương trình số phức có chứa tham số – Trang 51. Bài tập trắc nghiệm thực hành chủ đề 2 – Trang 57. Hướng dẫn giải bài tập trắc nghiệm chủ đề 2 – Trang 60. CHỦ ĐỀ 03 . MAX-MIN MÔ ĐUN SỐ PHỨC – Trang 72. Tóm tắt lí thuyết – Trang 72. + Dạng 1. Số phức có điểm biểu diễn thuộc đường cơ bản – Trang 76. + Dạng 2. Điều kiện ba điểm thẳng hàng và kĩ thuật đối xứng – Trang 83. + Dạng 3. Dùng miền nghiệm tìm Max-min mô-đun số phức – Trang 90. + Dạng 4. Ép điểm theo quỹ đạo đường tròn – Trang 92. + Dạng 5. Tạo cụm liên hợp chéo – Trang 96. + Dạng 6. Sử dụng tâm tỉ cự – Trang 98. + Dạng 7. Tạo tam giác đồng dạng và tam giác bằng nhau – Trang 105. + Dạng 8. Biện luận sự tương giao đường thẳng và đường tròn – Trang 109. + Dạng 9. Bất đẳng thức tam giác – Trang 112. + Dạng 10. Bất đẳng thức Mincowski và kĩ thuật cân bằng hệ số – Trang 116. + Dạng 11. Bất đẳng thức Cauchy Schwarz – Trang 120. + Dạng 12. Kĩ thuật đổi biến và khảo sát hàm số – Trang 123. + Dạng 13. Phương pháp lượng giác hóa số phức – Trang 126. Bài tập trắc nghiệm thực hành chủ đề 3 – Trang 129. Hướng dẫn giải bài tập trắc nghiệm chủ đề 3 – Trang 132.
Ngân hàng câu hỏi số phức Bài toán tìm số phức - Lê Bá Bảo
Tài liệu gồm 27 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (GV trường THPT Đặng Huy Trứ – Admin CLB Giáo Viên Trẻ TP Huế), tuyển chọn 50 bài toán trắc nghiệm liên quan đến tìm số phức, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4 và luyện thi THPT Quốc gia môn Toán. Trích dẫn tài liệu Ngân hàng câu hỏi số phức: Bài toán tìm số phức – Lê Bá Bảo : + Cho hai số phức 1 2 z z khác 0, thỏa mãn 2 2 1 2 1 2 z z. M N lần lượt là hai điểm biểu diễn số phức 1 2 z z trên mặt phẳng Oxy. Mệnh đề nào sau đây đúng? A. Tam giác OMN nhọn và không đều. B. Tam giác OMN đều. C. Tam giác OMN tù. D. Tam giác OMN vuông. + Cho số phức 2 z m m i 3 (1) với m là tham số thực thay đổi. Tập hợp các điểm biểu diễn số phức z thuộc đường cong. Tính diện tích hình phẳng giới hạn bởi đường cong đó và trục hoành. + Cho số phức z a bi a b. Biết tập hợp các điểm A biểu diễn hình học số phức z là đường tròn C có tâm I 43 và bán kính R 3. Đặt M là giá trị lớn nhất, m là giá trị nhỏ nhất của F a b 4 3 1. Tính giá trị M + m.
Ngân hàng câu hỏi số phức Phương trình với hệ số thực - Lê Bá Bảo
Tài liệu gồm 32 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (GV trường THPT Đặng Huy Trứ – Admin CLB Giáo Viên Trẻ TP Huế), tuyển chọn 50 bài toán trắc nghiệm chủ đề phương trình với hệ số thực, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4 và luyện thi THPT Quốc gia môn Toán. Trích dẫn tài liệu Ngân hàng câu hỏi số phức: Phương trình với hệ số thực – Lê Bá Bảo : + Trên tập hợp các số phức, xét phương trình z a z a z 1 1 6 (a là tham số thực). Có bao nhiêu giá trị của a để phương trình đó có hai nghiệm 1 z 2 z thỏa mãn 2 2 1 2 z z 42? Trên tập hợp số phức xét phương trình 2 2 z mz m m 2 2 1 0. Có bao nhiêu giá trị thực của m để phương trình đã cho có 2 nghiệm 1 2 z z; thoả mãn 1 2 z z 2? + Trên tập số phức, xét phương trình 2 2 z m z m m 2 4 4 1 0 m là tham số thực. Có bao nhiêu giá trị m để phương trình đã cho có hai nghiệm phức phân biệt 1 2 z z thỏa điều kiện 1 2 1 2 1 z z. Trên tập hợp các số phức, xét phương trình 2 2 z m z m m 2 2 1 4 5 0 (m là tham số thực). Có bao nhiêu giá trị của tham số m để phương trình có nghiệm 0 z thoả mãn 2 2 0 0 z m z m m 1 4 4 5 3 10? + Trên tập hợp các số phức, phương trình 2 z a z a 2 2 3 0 (a là tham số thực) có 2 nghiệm 1 z 2 z. Gọi M N là điểm biểu diễn của 1 z 2 z trên mặt phẳng tọa độ. Biết rằng có 2 giá trị của tham số a để tam giác OMN có một góc bằng 120. Tổng các giá trị đó bằng bao nhiêu? Trên tập hợp các số phức, xét phương trình 2 z m 2z 2 0 (m là tham số thực). Gọi T là tập hợp các giá trị của m để phương trình trên có hai nghiệm phân biệt được biểu diễn hình học bởi hai điểm A B trên mặt phẳng tọa độ sao cho diện tích tam giác ABC bằng 2 2 với C 1 1. Tổng các phần tử trong T bằng?
Chuyên đề cơ bản số phức và các phép toán ôn thi TN THPT môn Toán
Tài liệu gồm 36 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (giáo viên Toán trường THPT Đặng Huy Trứ, tỉnh Thừa Thiên Huế), hướng dẫn giải các dạng toán cơ bản chuyên đề số phức và các phép toán trong chương trình môn Toán lớp 12, hướng đến kỳ thi tốt nghiệp THPT môn Toán; tài liệu phù hợp với các em học sinh lớp 12 mất gốc Toán. I. TÓM TẮT LÝ THUYẾT A. SỐ PHỨC VÀ CÁC PHÉP TOÁN. 1. Số i. 2. Định nghĩa số phức. 3. Số phức bằng nhau. 4. Biểu diễn hình học số phức. 5. Môđun của số phức. 6. Số phức liên hợp. 7. Cộng và trừ số phức. 8. Nhân hai số phức. 9. Chia hai số phức. B. PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC. 1. Căn bậc hai của số thực âm. 2. Phương trình bậc hai với hệ số thực. II. BÀI TẬP TRẮC NGHIỆM MINH HỌA A. SỐ PHỨC VÀ CÁC PHÉP TOÁN. Dạng 1: Số phức và các khái niệm liên quan. Dạng 2: Tìm số phức thỏa mãn yêu cầu. Dạng 3: Biểu diễn số phức. B. PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC. III. LỜI GIẢI CHI TIẾT