Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn

Tài liệu gồm 10 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Góc có đỉnh bên trong đường tròn. Góc BIC nằm bên trong đường tròn (O) được gọi là góc có đỉnh ở bên trong đường tròn. Định lí 1: Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn. 2. Góc có đỉnh bên ngoài đường tròn. Các góc có đỉnh nằm bên ngoài đường tròn, các cạnh đều có điểm chung với đường được gọi là góc có đỉnh ở bên ngoài đường tròn. Định lí 2: Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn. B. Bài tập. Dạng 1 : Chứng minh hai góc bằng nhau, hai đoạn thẳng bằng nhau. Cách giải: Sử dụng hai định lí về số đo của góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn. Dạng 2 : Chứng minh hai đường thẳng song song hoặc vuông góc. Chứng minh đẳng thức cho trước. Cách giải: Áp dụng hai định lí về số đo góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn để có được các góc bằng nhau, cạnh bằng nhau. Từ đó suy ra điều cần chứng minh.

Nguồn: toanmath.com

Đọc Sách

Chinh phục các dạng toán Đại số 9 Lương Anh Nhật
Nội dung Chinh phục các dạng toán Đại số 9 Lương Anh Nhật Bản PDF - Nội dung bài viết Chinh phục toán Đại số 9 với tài liệu của thầy giáo Lương Anh Nhật Chinh phục toán Đại số 9 với tài liệu của thầy giáo Lương Anh Nhật Tài liệu "Chinh phục các dạng toán Đại số 9" được biên soạn bởi thầy giáo Lương Anh Nhật và bao gồm tổng cộng 62 trang. Trên từng trang sách, thầy giáo hướng dẫn chi tiết về phương pháp giải các dạng toán đại số phức tạp cho học sinh lớp 9. Chương đầu tiên của tài liệu bao gồm nhiều bài tập liên quan đến Căn bậc hai và bậc ba. Thầy giáo giới thiệu với học sinh cách giải các bài toán liên quan đến căn bậc hai, biến đổi đơn giản biểu thức chứa căn thức bậc hai, giải phương trình chứa căn thức thường gặp và cả giải các bài toán về căn bậc ba. Mỗi bài tập đều được hướng dẫn cụ thể để học sinh hiểu rõ và áp dụng vào thực hành. Chương tiếp theo bàn về Hàm số bậc nhất, một chủ đề rất quan trọng trong toán học. Thầy giáo Lương Anh Nhật giúp học sinh hiểu rõ về hàm số, các tính chất của hàm số bậc nhất và cách giải các bài tập liên quan. Cuối cùng, chương III tập trung vào Hệ hai phương trình bậc nhất hai ẩn số. Thầy giáo hướng dẫn học sinh cách giải phương trình bậc nhất hai ẩn số, hệ phương trình bậc nhất hai ẩn số và cách giải toán bằng cách lập phương trình. Mỗi bài tập đều đi kèm với hướng dẫn chi tiết để học sinh có thể tự tin giải quyết.
Chuyên đề hệ thức lượng trong tam giác vuông Lư Sĩ Pháp
Nội dung Chuyên đề hệ thức lượng trong tam giác vuông Lư Sĩ Pháp Bản PDF - Nội dung bài viết Chuyên đề hệ thức lượng trong tam giác vuông Chuyên đề hệ thức lượng trong tam giác vuông Chuyên đề này bao gồm 34 trang sách do thầy giáo Lư Sĩ Pháp biên soạn, nhằm hướng dẫn cách giải các dạng bài toán hình học liên quan đến tam giác vuông. Trên đây là một số nội dung chính trong chuyên đề: Phần 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông - Kiến thức cần nắm: Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền, một số hệ thức liên quan đến đường cao. - Bài tập thực hành. Phần 2: Tỉ số lượng giác của góc nhọn - Kiến thức cần nắm: Khái niệm tỉ số lượng giác của một góc nhọn, tỉ số lượng giác của hai góc phụ nhau. - Bài tập thực hành. Phần 3: Một số hệ thức về cạnh và góc trong tam giác vuông - Kiến thức cần nắm: Các hệ thức và công thức tính diện tích tam giác vuông. - Bài tập thực hành và ôn tập chương 1 về hệ thức lượng trong tam giác, tỉ số lượng giác của góc nhọn, cũng như các công thức tính diện tích. Đây là một tài liệu hữu ích giúp học sinh hiểu rõ và áp dụng những kiến thức cơ bản về hệ thức lượng trong tam giác vuông.
Tổng hợp kiến thức môn Toán phần Đại số
Nội dung Tổng hợp kiến thức môn Toán phần Đại số Bản PDF - Nội dung bài viết Tổng hợp kiến thức môn Toán phần Đại số Tổng hợp kiến thức môn Toán phần Đại số Tài liệu này được biên soạn bởi quý thầy, cô giáo Nhóm Toán Tiểu Học – THCS – THPT Việt Nam, bao gồm 32 trang để tổng hợp kiến thức môn Toán lớp 9 phần Đại số. Đây là tài liệu hữu ích giúp học sinh lớp 9 tra cứu nhanh khi học chương trình Đại số 9 và ôn thi vào lớp 10 môn Toán. 1. CĂN BẬC HAI – CĂN BẬC BA: Tài liệu cung cấp kiến thức về căn bậc hai và căn bậc ba, điều kiện để biểu thức xác định, liên hệ giữa phép khai căn, nhân, chia, cũng như cách đưa thừa số vào trong hoặc ra ngoài căn. 2. HÀM SỐ BẬC NHẤT – BẬC HAI: Nội dung bao gồm về điều kiện để hàm số là hàm số bậc nhất, hàm số đồng biến, nghịch biến, hệ số góc của đường thẳng, cách vẽ đồ thị hàm số bậc nhất và nhiều kiến thức khác liên quan đến hàm số. 3. ĐỒ THỊ HÀM SỐ: Tài liệu này trình bày về tính chất của đồ thị hàm số, điểm thuộc đồ thị, và vị trí tương đối giữa đường thẳng và Parabol trên mặt phẳng. 4. GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH HOẶC HỆ PHƯƠNG TRÌNH: Tài liệu này hướng dẫn cách giải bài toán bằng cách lập phương trình hoặc hệ phương trình, với nhiều dạng toán phổ biến. 5. HỆ PHƯƠNG TRÌNH: Bao gồm kiến thức về kiểm tra nghiệm, tìm nghiệm tổng quát, giải hệ phương trình bằng các phương pháp khác nhau và nhiều kiến thức khác về hệ phương trình. 6. HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI I, II: Tài liệu này chứa thông tin về hệ phương trình đối xứng loại I và II. 7. HỆ ĐẲNG CẤP BẬC HAI: Cung cấp kiến thức về hệ đẳng cấp bậc hai và cách giải. 8-11. PHƯƠNG TRÌNH BẬC HAI, BẬC BA, BẬC BỐN: Bao gồm các phương trình bậc hai, bậc ba, bậc bốn và cách giải chúng. Tài liệu này là nguồn thông tin quý báu giúp học sinh làm quen và nắm vững kiến thức về Đại số, từ đó củng cố kỹ năng và chuẩn bị tốt cho kỳ thi môn Toán. Chúc các em học tốt!
Chuyên đề căn bậc hai và căn bậc ba Nguyễn Thanh Tâm
Nội dung Chuyên đề căn bậc hai và căn bậc ba Nguyễn Thanh Tâm Bản PDF - Nội dung bài viết Chuyên đề căn bậc hai và căn bậc ba của thầy giáo Nguyễn Thanh Tâm Chuyên đề căn bậc hai và căn bậc ba của thầy giáo Nguyễn Thanh Tâm Bộ tài liệu này bao gồm tổng cộng 43 trang, được biên soạn bởi thầy giáo Nguyễn Thanh Tâm. Tronig tài liệu, thầy giáo phân loại và hướng dẫn giải các dạng bài toán liên quan đến căn bậc hai và căn bậc ba. Tài liệu này sẽ giúp bạn hiểu rõ hơn về các kiến thức cơ bản và nâng cao trong chuyên đề căn bậc hai và căn bậc ba. Với sự giảng dạy chi tiết, cụ thể của thầy giáo Nguyễn Thanh Tâm, bạn sẽ có cơ hội nắm vững những kiến thức quan trọng và áp dụng chúng vào việc giải các bài tập thực hành. Hãy tận dụng cơ hội học tập từ tài liệu này để cải thiện khả năng giải toán của mình và tự tin hơn khi đối mặt với các dạng bài toán căn bậc hai và căn bậc ba. Chúc bạn học tốt!