Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục

Tài liệu gồm 124 trang được tổng hợp bởi thầy Nguyễn Bảo Vương, phân dạng và chọn lọc các bài toán trắc nghiệm về các chủ đề: giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục trong chương trình Đại số và Giải tích 11 chương IV; các câu hỏi và bài toán đều có đáp án và lời giải chi tiết. Khái quát nội dung tài liệu các dạng toán giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục: Chủ đề 1 . Giới hạn dãy số Phần A . Câu hỏi và bài tập Dạng 0. Câu hỏi lý thuyết. Dạng 1. Dãy số dạng phân thức. + Phân thức bậc tử bé hơn bậc mẫu. + Phân thức bậc tử bằng bậc mẫu. + Phân thức bậc tử lớn hơn bậc mẫu. + Phân thức chứa căn. Dạng 2. Dãy số chứa căn thức. Dạng 3. Dãy số chứa lũy thừa. Dạng 4. Tổng cấp số nhân lùi vô hạng. Dạng 5. Một số bài toán khác. Phần B . Lời giải tham khảo Dạng 0. Câu hỏi lý thuyết. Dạng 1. Dãy số dạng phân thức. + Phân thức bậc tử bé hơn bậc mẫu. + Phân thức bậc tử bằng bậc mẫu. + Phân thức bậc tử lớn hơn bậc mẫu. + Phân thức chứa căn. Dạng 2. Dãy số chứa căn thức. Dạng 3. Dãy số chứa lũy thừa. Dạng 4. Tổng cấp số nhân lùi vô hạng. Dạng 5. Một số bài toán khác. Chủ đề 2 . Giới hạn hàm số Phần A . Câu hỏi và bài tập Dạng 1. Giới hạn hữu hạn. Dạng 2. Giới hạn một bên. Dạng 3. Giới hạn tại vô cực. Dạng 4. Giới hạn vô định. + Dạng 0/0: Không chứa dấu căn thức và có chứa dấu căn thức. + Dạng ∞ − ∞ (vô cùng trừ vô cùng). Phần B . Lời giải tham khảo Dạng 1. Giới hạn hữu hạn. Dạng 2. Giới hạn một bên. Dạng 3. Giới hạn tại vô cực. Dạng 4. Giới hạn vô định. + Dạng 0/0: Không chứa dấu căn thức và có chứa dấu căn thức. + Dạng ∞ − ∞ (vô cùng trừ vô cùng). [ads] Chủ đề 3 . Hàm số liên tục Phần A . Câu hỏi và bài tập Dạng 1. Câu hỏi lý thuyết. Dạng 2. Liên tục tại một điểm. + Xét tính liên tục tại điểm của hàm số. + Điểm gián đoạn của hàm số. + Bài toán chứa tham số. Dạng 3. Liên tục trên khoảng. + Xét tính liên tục trên khoảng của hàm số. + Bài toán chứa tham số. Dạng 4. Chứng minh phương trình có nghiệm. Phần B . Lời giải tham khảo Dạng 1. Câu hỏi lý thuyết. Dạng 2. Liên tục tại một điểm. + Xét tính liên tục tại điểm của hàm số. + Điểm gián đoạn của hàm số. + Bài toán chứa tham số. Dạng 3. Liên tục trên khoảng. + Xét tính liên tục trên khoảng của hàm số. + Bài toán chứa tham số. Dạng 4. Chứng minh phương trình có nghiệm.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề giới hạn dãy số, giới hạn hàm số và hàm số liên tục
Tài liệu gồm 58 trang bao gồm lý thuyết SGK, phân dạng toán và bài tập rèn luyện các chủ đề giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục trong chương trình Đại số và Giải tích 11 chương 4. GIỚI HẠN CỦA DÃY SỐ I. Lý thuyết giới hạn của dãy số  1. Dãy số có giới hạn 0 2. Dãy số có giới hạn hữu hạn 3. Dãy số có giới hạn vô cực II. Các dạng toán về giới hạn của dãy số Dạng 1. Tính giới hạn dãy số cho bởi công thức Dạng 2. Tính giới hạn của dãy số cho bởi hệ thức truy hồi Dạng 3. Tổng của cấp số nhân lùi vô hạn Dạng 4. Tìm giới hạn của dãy số mà tổng là n số hạng đầu tiên của một dãy số khác III. Bài tập rèn luyện kỹ năng Dạng 1. Bài tập lý thuyết Dạng 2. Bài tập tính giới hạn dãy số cho bởi công thức Dạng 3. Tổng của cấp số nhân lùi vô hạn Dạng 4. Tìm giới hạn của dãy số cho bởi hệ thức truy hồi Dạng 5. Tìm giới hạn của dãy số có chứa tham số Dạng 6. Tìm giới hạn của dãy số mà số hạng tổng quát là tổng của n số hạng đầu tiên của một dãy số khác [ads] GIỚI HẠN CỦA HÀM SỐ I. Lý thuyết giới hạn của hàm số 1. Định nghĩa giới hạn của hàm số tại một điểm 2. Định nghĩa giới hạn của hàm số tại vô cực 3. Một số giới hạn đặc biệt 4. Định lí về giới hạn hữu hạn 5. Quy tắc về giới hạn vô cực 6. Các dạng vô định II. Các dạng toán về giới hạn của hàm số Dạng 1. Tìm giới hạn xác định bằng cách sử dụng trực tiếp các định nghĩa, định lí và quy tắc Dạng 2. Tìm giới hạn vô định dạng 0/0 Dạng 3. Giới hạn vô định dạng ∞/∞ Dạng 4. Giới hạn vô định dạng 0.∞ Dạng 5. Dạng vô định ∞ – ∞ III. Bài tập rèn luyện kỹ năng HÀM SỐ LIÊN TỤC I. Lý thuyết hàm số liên tục II. Các dạng toán về hàm số liên tục Dạng 1. Xét tính liên tục của hàm số Dạng 2. Chứng minh phương trình có nghiệm III. Bài tập rèn luyện kỹ năng
Đề cương ôn tập chủ đề giới hạn - Phùng Hoàng Em
Tài liệu gồm 9 trang được sưu tầm và biên soạn bởi thầy Phùng Hoàng Em tuyển chọn các bài tập trắc nghiệm (có đáp án) và tự luận chủ đề giới hạn. Tài liệu giúp học sinh ôn tập chuẩn bị cho đợt kiểm tra Đại số và Giải tích 11 chương 4. Trích dẫn tài liệu : + Để trang hoàng cho căn hộ của mình, bạn An quết định tô màu một miếng bìa hình vuông cạnh bằng 1. Bạn ấy tô màu đỏ các hình vuông nhỏ được đánh số lần lượt là 1, 2, 3, …, n, …, trong đó cạnh của hình vuông kế tiếp bằng một nửa cạnh hình vuông trước đó (hình vẽ). Giả sử quy trình tô màu của An có thể tiến ra vô hạn. Hỏi bạn An tô màu đến hình vuông thứ mấy thì diện tích của hình vuông được tô nhỏ hơn 1/1000? [ads] + Cho a, b, c là các số thực. Chứng minh phương trình ab(x − a)(x − b) + bc(x − b)(x − c) + ca(x − c)(x − a) = 0 luôn có nghiệm với mọi a, b, c. + Cho 3 số thực a, b, c thoả 5a + 4b + 6c = 0. Chứng minh phương trình ax^2 + bx + c = 0 luôn có nghiệm.
Chuyên đề giới hạn có đáp án và lời giải chi tiết - Đặng Việt Đông
Chuyên đề giới hạn có đáp án và lời giải chi tiết – Đặng Việt Đông gồm 136 trang, cuốn chuyên đề là tài liệu hữu ích cho kỳ thi THPT Quốc gia năm học 2017 – 2018 khi trong đề thi Toán năm nay có bổ sung kiến thức chương trình Toán 11. Phần I – Đề bài Giới hạn dãy số + Dạng 1. Tính giới hạn bằng định nghĩa + Dạng 2. Tìm giới hạn của dãy số dựa vào các định lý và các giới hạn cơ bản Giới hạn hàm số + Dạng 1. Tính giới hạn dạng bằng định nghĩa hoặc tại một điểm + Dạng 2. Tính giới hạn dạng vô định 0/0 [ads] + Dạng 3. Tính giới hạn dạng vô định ∞/∞ + Dạng 4. Giới hạn mộ bên và các dạng vô định khác + Dạng 5 . Giới hạn lượng giác Hàm số liên tục + Dạng 1. Tính liên tục của hàm số tại một điểm + Dạng 2. Tính liên tục của hàm số trên tập xác định + Dạng 3. Áp dụng tính liên tục xét số nghiệm của phương trình Phần II – Hướng dẫn giải
Tìm giới hạn bằng máy tính cầm tay - Phạm Minh Đức
Tài liệu gồm 20 trang trình bày phương pháp tìm giới hạn bằng máy tính cầm tay Casio – Vinacal, nội dung tài liệu gồm các phần: I.Các phím cần dùng II. Tìm giới hạn III. Ví dụ minh họa IV Bài tập áp dụng [ads]