Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập khối đa diện và thể tích của chúng - Hoàng Xuân Nhàn

Tài liệu gồm 143 trang, được biên soạn bởi thầy giáo Hoàng Xuân Nhàn, hướng dẫn giải các dạng bài tập khối đa diện và thể tích của chúng, hỗ trợ học sinh khối 12 trong quá trình học tập chương trình Hình học 12 chương 1 và ôn thi tốt nghiệp THPT môn Toán. Mục lục các dạng bài tập khối đa diện và thể tích của chúng – Hoàng Xuân Nhàn: Bài 1&2 . Đa diện, đa diện lồi, đa diện đều (Trang 1). Dạng 1. Nhận diện hình (khối) đa diện, đa diện lồi (Trang 3). Dạng 2. Tìm số đỉnh, số cạnh, số mặt của một hình đa diện (Trang 5). Dạng 3. Tâm đối xứng, trục đối xứng, mặt đối xứng, lắp ghép đa diện (Trang 6). Bài tập trắc nghiệm (Trang 9). Đáp bán bài tập trắc nghiệm (Trang 14). Bài 3 . Thể tích khối đa diện (Trang 15). Dạng 1. Tìm thể tích khối chóp (Trang 20). + Bài toán 1. Tìm thể tích khối chóp bằng các phép tính đơn giản (Trang 21). + Bài toán 2. Tìm thể tích khối chóp thông qua góc (Trang 24). + Bài toán 3. Tỉ số thể tích khối chóp (Trang 31). Dạng 2. Thể tích khối lăng trụ (Trang 38). + Bài toán 1. Tìm thể tích khối lăng trụ bằng phép tính đơn giản (Trang 38). + Bài toán 2. Tìm thể tích khối lăng trụ thông qua góc (Trang 41). + Bài toán 3. Tỉ số thể tích khối lăng trụ (Trang 46). + Bài toán 4. Lăng trụ ẩn (Trang 51). Dạng 3. GTLN – GTNN (max – min) thể tích (Trang 53). + Bài toán 1. Điều kiện về cạnh trong hình chóp (Trang 54). + Bài toán 2. Điều kiện về cạnh trong lăng trụ (Trang 57). + Bài toán 3. Điều kiện về góc (Trang 59). + Bài toán 4. Bài toán tối ưu (Trang 62). Bài tập trắc nghiệm (Trang 66). Đáp án bài tập trắc nghiệm (Trang 101). Bài 4 . Khoảng cách trong không gian (Trang 102). Dạng 1. Khoảng cách điểm đến mặt phẳng (Trang 102). + Bài toán 1. Sử dụng công thức thể tích để tìm khoảng cách (Trang 103). + Bài toán 2. Khoảng cách từ điểm đến mặt phẳng chứa đường cao hình chóp (Trang 105). + Bài toán 3. Khoảng cách từ chân đường cao của hình chóp đến mặt bên (Trang 107). + Bài toán 4. Khoảng cách từ một điểm bất kỳ đến mặt bên của hình chóp (Trang 111). Dạng 2. Khoảng cách giữa hai đường thẳng chéo nhau (Trang 115). Dạng 3. Cac khoảng cách đối với lăng trụ (Trang 120). Dạng 4. Thể tích khối đa diện liên quan khoảng cách (Trang 125). Bài tập trắc nghiệm (Trang 129). Đáp án bài tập trắc nghiệm (Trang 141). Ngoài bản file PDF, thầy Hoàng Xuân Nhàn còn chia sẻ bản file WORD (.docx) nhằm hỗ trợ quý thầy, cô giáo trong việc biên soạn tài liệu học tập và giảng dạy.

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm chuyên đề hình học tọa độ Oxyz - Đặng Việt Đông
Tài liệu gồm 47 trang, với phần tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình học tọa độ Oxyz. Các bài toán được được phân dạng thành: + Tọa độ điểm, tọa độ véc tơ và các phép toán véc tơ (75 câu) + Phương trình mặt phẳng (86 câu) + Phương trình đường thẳng (31 câu) + Phương trình mặt cầu (49 câu) + Khoảng cách (34 câu) + Góc (15 câu) + Vị trí tương đối giữa điểm, mặt phẳng, đường thẳng, mặt cầu (50 câu) + Tìm điểm thỏa mãn yêu cầu bài toán (51 câu) [ads]
Bài tập tọa độ không gian phân theo dạng có lời giải chi tiết - Trần Sĩ Tùng
Tài liệu gồm 67 trang, tuyển chọn bài tập các dạng toán phương pháp tọa độ không gian có lời giải chi tiết. TĐKG 01: VIẾT PHƯƠNG TRÌNH MẶT PHẲNG Dạng 1: Viết phương trình mặt phẳng bằng cách xác định vectơ pháp tuyến Dạng 2: Viết phương trình mặt phẳng liên quan đến mặt cầu Dạng 3: Viết phương trình mặt phẳng liên quan đến khoảng cách Dạng 4: Viết phương trình mặt phẳng liên quan đến góc Dạng 5: Viết phương trình mặt phẳng liên quan đến tam giác Dạng 6: Các dạng khác về viết phương trình mặt phẳng TĐKG 02: VIẾT PHƯƠNG TRÌNH ĐƯỜNG THẲNG Dạng 1: Viết phương trình đường thẳng bằng cách xác định vectơ chỉ phương Dạng 2: Viết phương trình đường thẳng liên quan đến một đường thẳng khác Dạng 3: Viết phương trình đường thẳng liên quan đến hai đường thẳng khác Dạng 4: Viết phương trình đường thẳng liên quan đến khoảng cách Dạng 5: Viết phương trình đường thẳng liên quan đến góc Dạng 6: Viết phương trình đường thẳng liên quan đến tam giác [ads] TĐKG 03: VIẾT PHƯƠNG TRÌNH MẶT CẦU Dạng 1: Viết phương trình mặt cầu bằng cách xác định tâm và bán kính Dạng 2: Viết phương trình mặt cầu bằng cách xác định các hệ số của phương trình Dạng 3: Các bài toán liên quan đến mặt cầu TĐKG 04: TÌM ĐIỂM THOẢ ĐIỀU KIỆN CHO TRƯỚC Dạng 1: Xác định điểm thuộc mặt phẳng Dạng 2: Xác định điểm thuộc đường thẳng Dạng 3: Xác định điểm thuộc mặt cầu Dạng 4: Xác định điểm trong không gian Dạng 5: Xác định điểm trong đa giác