Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2023 - 2024 phòng GDĐT Nghi Lộc - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 phòng GD&ĐT Nghi Lộc – Nghệ An : + Đại hội Công đoàn huyện Nghi Lộc lần thứ IX, nhiệm kỳ 2023 – 2028 dự kiến tổ chức vào ngày 07 tháng 6 năm 2023. Để chuẩn bị ghế ngồi cho đại biểu, Ban Tổ chức sử dụng hội trường 300 chỗ ngồi có đúng 300 ghế được chia đều cho các dãy. Nếu bớt mỗi dãy 3 ghế và thêm 5 dãy thì số ghế trong hội trường không thay đổi. Hỏi ban đầu, số ghế trong hội trường được chia thành bao nhiêu dãy? + Một bồn chứa xăng hình trụ có đường kính đáy 2,2m và chiều cao 3,5m (Hình vẽ). Biết rằng, cứ 1kg sơn thì sơn được 8m2. Hỏi để sơn bề mặt ngoài của bồn chứa xăng hết bao nhiêu kg sơn? Giả sử bề dày thành bồn chứa xăng không đáng kể (lấy pi = 3,14; kết quả làm tròn đến chữ số thập phân thứ hai sau dấu phẩy). + Từ điểm A nằm ngoài đường tròn (O) kẻ tiếp tuyến AM, AN với M, N là tiếp điểm và cát tuyến APQ (AP < AQ và M nằm trên cung nhỏ PQ). Gọi D là trung điểm PQ, T là giao điểm của MD với (O). a) Chứng minh tứ giác AMON nội tiếp. b) Chứng minh: NT // PQ. c) Kéo dài MO cắt (O) tại K, từ O kẻ đường thẳng vuông góc với OM cắt (O) tại I và L. Gọi E là điểm bất kỳ trên cung nhỏ IK (E không trùng với I và K). Nối ME, LE cắt OI, OK lần lượt tại F và H. Chứng minh rằng: 2 OF OH IF KH.

Nguồn: toanmath.com

Đọc Sách

Đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 1)
Nội dung Đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 1) Bản PDF - Nội dung bài viết Đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 1) Đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 1) Đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 1) bao gồm 2 trang với 6 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút. Trích dẫn đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 1): + Đầu tháng 2 năm 2020, giá tôm hùm giảm do dịch bệnh COVID-19. Ông A bán 40% số tôm với giá 400 nghìn đồng mỗi kilôgam và số còn lại với giá 700 nghìn đồng mỗi kilôgam. Ông A đầu tư vào hồ tôm 250 triệu đồng và sau khi trừ đi số tiền này, lãi 40 triệu đồng. Nếu không có dịch COVID-19, thương lái sẽ mua hết số tôm với giá 1,2 triệu đồng mỗi kilôgam. Hỏi nếu không có dịch COVID-19, gia đình ông A thu được lợi nhuận bao nhiêu? + Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Qua A kẻ các tiếp tuyến AM và AN với đường tròn (O), với M và N là các tiếp điểm. Dựng cát tuyến ABC với đường tròn (O) sao cho B nằm giữa A, C đồng thời B và M nằm cùng phía so với đường thẳng AO. Chứng minh những điều sau: 1. Tứ giác ANOM nội tiếp vào đường tròn và AB.AC = AM2. 2. Gọi H là giao điểm của AO và MN. Chứng minh tứ giác OHBC nội tiếp vào đường tròn. 3. Qua B kẻ đường thẳng song song với đường thẳng MC lần lượt cắt AM và MN tại E và F. Chứng minh HM là phân giác trong của góc BHC và B là trung điểm của đoạn thẳng EF. + Phương trình x2 + (2m − 1)x − 3 = 0. Chứng minh phương trình luôn có hai nghiệm phân biệt, trái dấu với mọi giá trị của m. Tìm tất cả các giá trị m để tổng hai nghiệm là một số dương. Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn x21 + x22 = 7.
Đề thi vào 10 chuyên môn Toán năm 2020 2021 trường ĐHKH Huế (vòng 2)
Nội dung Đề thi vào 10 chuyên môn Toán năm 2020 2021 trường ĐHKH Huế (vòng 2) Bản PDF - Nội dung bài viết Đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 2) Đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 2) Đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 2) bao gồm 02 trang với 06 bài toán dạng tự luận, thời gian làm bài thi là 150 phút. Trích dẫn đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 2): Cho A là tập gồm 17 số tự nhiên mà các chữ số của mỗi số được lấy từ tập {0 ; 1 ; 2 ; 3 ; 4}. Chứng minh rằng có thể chọn được 5 số từ tập A sao cho tổng của 5 số này chia hết cho 5. Một hình chữ nhật bị các đường thẳng chia thành các đa giác. Trong đó có 3 tam giác và 2 tứ giác có diện tích lần lượt là 5, 6, 10, x và 54. Tìm giá trị của x. Cho P là parabol có phương trình y = x^2, A là điểm có tọa độ (3; 5) và m là tham số dương. Viết phương trình đường thẳng qua A và có hệ số góc m. Tìm giá trị nhỏ nhất của m để đường thẳng cắt P. Giả sử đường thẳng cắt P tại 2 điểm có hoành độ x1 và x2. Tìm mối liên hệ giữa x1 và x2.
Đề thi vào 10 môn Toán (chuyên) năm 2020 2021 trường chuyên Quốc học Huế
Nội dung Đề thi vào 10 môn Toán (chuyên) năm 2020 2021 trường chuyên Quốc học Huế Bản PDF - Nội dung bài viết Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Quốc học Huế Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Quốc học Huế Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Quốc học Huế có tổng cộng 5 bài toán dạng tự luận, được biên soạn trên 2 trang giấy. Thời gian làm bài thi là 150 phút, và kỳ thi được tổ chức vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn một số câu hỏi từ đề thi: + Trên mặt phẳng tọa độ Oxy, cho đường thẳng \( (d) : y = mx+ 4 \) (với \( m \neq 0 \)) và parabol \( (P) : y = 2x^2 \). Gọi A, B là các điểm giao của \( (d) \) và \( (P) \); A0 và B0 lần lượt là hình chiếu vuông góc của A và B lên trục hoành. Tìm giá trị của \( m \) để diện tích tứ giác ABB0A0 bằng 15 cm2. + Chứng minh phương trình \( x^2 - (m^2 - 1) x + m(m - 1)^2 = 0 \) luôn có nghiệm với mọi giá trị của \( m \). Tìm giá trị của \( m \) sao cho nghiệm lớn nhất của phương trình đạt giá trị nhỏ nhất. + Cho hai đường tròn \( (O) \) và \( (O0) \) cắt nhau tại hai điểm A và B, với điểm O nằm ngoài đường tròn \( (O0) \). Từ một điểm M trên tia đối của tia AB, vẽ các tiếp tuyến MC, MD với đường tròn \( (O) \) (C, D là các tiếp điểm và D nằm trong đường tròn \( (O0) \)). Hai đường thẳng AC và AD cắt đường tròn \( (O0) \) lần lượt tại E và F, với E và F không trùng với A. Hai đường thẳng CD và EF cắt nhau tại I. Câu hỏi được chia thành 3 phần: Chứng minh tứ giác BCEI là tứ giác nội tiếp, và \( EI \cdot BD = BI \cdot AD \). Chứng minh rằng I là trung điểm của đoạn thẳng EF. Chứng minh rằng khi M thay đổi trên tia đối của tia AB, đường thẳng CD luôn đi qua một điểm cố định. Đề thi này đòi hỏi sự logic, khả năng suy luận và phân tích của thí sinh để giải quyết các bài toán phức tạp một cách chính xác và hiệu quả.
Tuyển tập đề thi vào môn Toán chuyên và không chuyên
Nội dung Tuyển tập đề thi vào môn Toán chuyên và không chuyên Bản PDF - Nội dung bài viết Tuyển tập đề thi vào môn Toán chuyên và không chuyên Tuyển tập đề thi vào môn Toán chuyên và không chuyên Bộ tài liệu này bao gồm tổng cộng 328 trang, chứa đựng nhiều đề thi vào lớp 10 môn Toán chuyên và không chuyên. Được biên soạn nhằm giúp học sinh lớp 9 rèn luyện và chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán sắp tới. Trong tài liệu này, học sinh sẽ được tiếp cận với một loạt các đề thi tuyển sinh vào lớp 10 từ các tỉnh thành khác nhau trên cả nước. Từ các đề thi của An Giang, Bắc Giang, Bắc Kạn, cho đến các đề thi của Bình Dương, Cần Thơ, Đà Nẵng và nhiều địa phương khác. Với sự đa dạng về nội dung và cấu trúc, tuyển tập này sẽ giúp học sinh nắm vững kiến thức, rèn luyện kỹ năng giải các dạng bài tập phong phú, từ đó nâng cao khả năng làm bài và tự tin hơn khi bước vào kỳ thi quan trọng. Đây chính là tài liệu học tập hữu ích, giúp học sinh tự học hiệu quả và nắm vững kiến thức Toán cần thiết để vượt qua thử thách trong kỳ thi tuyển sinh sắp tới. Một công cụ không thể thiếu cho sự chuẩn bị hoàn hảo của các em học sinh!