Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán khoảng cách trong không gian - Nguyễn Tất Thu

Bài viết này sẽ trình bày cách tính khoảng cách từ một điểm đến mặt phẳng và khoảng cách giữa hai đường thẳng chéo nhau. Quy trình tính khoảng cách là chúng ta tìm cách chuyển về khoảng cách từ chân đường cao đến một mặt phẳng có giao tuyến với mặt đáy, hoặc khoảng cách từ một điểm nằm trong mặt phẳng đáy đến một mặt phẳng chứa đường cao của hình chóp. Với mô hình lăng trụ, ta chỉ cần tách phần cần tính để đưa về mô hình của hình chóp. Bài toán 1 . Khoảng cách từ một điểm đến mặt phẳng. Tính khoảng cách từ điểm M đến mặt phẳng (α). Để tính được khoảng từ điểm M đến mặt phẳng (α) ta có các cách sau: + Cách 1: Xác định hình chiếu vuông góc H của M lên (α). + Cách 2: Sử dụng công thức thể tích. + Cách 3: Chuyển việc tính khoảng cách từ M về tính khoảng cách từ điểm N dễ tính hơn. + Cách 4: Gắn hệ trục tọa độ Oxyz và sử dụng công thức khoảng cách từ điểm đến mặt phẳng. [ads] Bài toán 2 . Khoảng cách giữa hai đường thẳng chéo nhau. Cho hai đường thẳng chéo nhau a và b. Tính khoảng cách giữa a và b. Để tính khoảng cách giữa hai đường thẳng chéo nhau ta có thể dùng một trong các cách sau: + Cách 1: Dựng đoạn vuông góc chung MN của a và b. Khi đó d(a,b) = MN. + Cách 2: Dựng mặt phẳng (α) đi qua a và song song với b, khi đó: d(a,b) = d(a,(α)) = d(M,(α)) với M là điểm bất kì thuộc (α). + Cách 3: Dựng hai mặt phẳng (α) đi qua a và song song với b, (β) đi qua b và song song với a. Khi đó: d(a,b) = d((α),(β)). + Cách 4: Sử dụng phương pháp tọa độ.

Nguồn: toanmath.com

Đọc Sách

Nắm trọn chuyên đề khối đa diện và khối tròn xoay
Cuốn sách gồm 448 trang, được biên soạn bởi nhóm tác giả Tư Duy Toán Học 4.0: Phan Nhật Linh, Nguyễn Duy Hiếu, Nguyễn Khánh Linh, Lê Huy Long, tóm tắt toàn bộ lý thuyết và phương pháp giải các dạng toán, các ví dụ minh họa và bài tập rèn luyện từ cơ bản đến nâng cao chuyên đề khối đa diện và khối tròn xoay, giúp các em hoàn thiện kiến thức, rèn tư duy và rèn luyện tốc độ làm bài; tất cả các bài tập trong sách đều có giải chi tiết 100% tiện lợi cho việc so sánh đáp án và tra cứu thông tin. Mục lục cuốn sách nắm trọn chuyên đề khối đa diện và khối tròn xoay: CHUYÊN ĐỀ . KHỐI ĐA DIỆN – HÌNH HỌC KHÔNG GIAN. CHỦ ĐỀ . THỂ TÍCH KHỐI ĐA DIỆN. Dạng 1. Mở đầu về khối đa diện. Dạng 2. Thể tích khối lăng trụ. Dạng 3. Thể tích khối chóp có cạnh bên vuông góc với đáy. Dạng 4. Thể tích khối chóp có mặt bên vuông góc với đáy. Dạng 5. Thể tích khối chóp đều. Dạng 6. Thể tích khối tứ diện đặc biệt. Dạng 7. Tỉ số thể tích. Dạng 8. Các bài toán thể tích chọn lọc. Dạng 9. Bài toán về góc – khoảng cách. Dạng 10. Cực trị khối đa diện. CHUYÊN ĐỀ . KHỐI TRÒN XOAY – NÓN – TRỤ – CẦU. CHỦ ĐỀ . KHỐI NÓN – KHỐI TRỤ. Dạng 1. Tìm các yếu tố liên quan đến khối nón, khối trụ. Dạng 2. Khối tròn xoay nội, ngoại tiếp khối đa diện. Dạng 3. Cực trị và toán thực tế về khối tròn xoay. CHỦ ĐỀ . KHỐI CẦU. Dạng 1. Khối cầu ngoại tiếp tứ diện.
Tổng ôn tập TN THPT 2021 môn Toán Góc và khoảng cách
Tài liệu gồm 64 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển tập câu hỏi và bài tập trắc nghiệm chuyên đề góc và khoảng cách, có đáp án và lời giải chi tiết. Các câu hỏi và bài tập được trích từ các đề thi thử tốt nghiệp THPT năm 2021 môn Toán của các trường THPT và sở GD&ĐT trên cả nước, với mục đích giúp các em học sinh rèn luyện, rà soát kiến thức chủ đề Hình học 12 chương 1, trước khi bước vào kỳ thi tốt nghiệp THPT 2021 môn Toán và các kỳ thi tuyển sinh Đại học – Cao đẳng. Mục lục tài liệu tổng ôn tập TN THPT 2021 môn Toán: Góc và khoảng cách: 1. Mức độ nhận biết: 05 câu. + Câu hỏi và bài tập (Trang 01). + Đáp án và lời giải chi tiết (Trang 03). 2. Mức độ thông hiểu: 30 câu. + Câu hỏi và bài tập (Trang 06). + Đáp án và lời giải chi tiết (Trang 11). 3. Mức độ vận dụng thấp: 41 câu. + Câu hỏi và bài tập (Trang 28). + Đáp án và lời giải chi tiết (Trang 35).
Tổng ôn tập TN THPT 2021 môn Toán Khối đa diện và thể tích của chúng
Tài liệu gồm 100 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển tập câu hỏi và bài tập trắc nghiệm chuyên đề khối đa diện và thể tích của chúng, có đáp án và lời giải chi tiết. Các câu hỏi và bài tập được trích từ các đề thi thử tốt nghiệp THPT năm 2021 môn Toán của các trường THPT và sở GD&ĐT trên cả nước, với mục đích giúp các em học sinh rèn luyện, rà soát kiến thức chủ đề Hình học 12 chương 1, trước khi bước vào kỳ thi tốt nghiệp THPT 2021 môn Toán và các kỳ thi tuyển sinh Đại học – Cao đẳng. Mục lục tài liệu tổng ôn tập TN THPT 2021 môn Toán: Khối đa diện và thể tích của chúng: 1. Mức độ nhận biết: 57 câu. + Câu hỏi và bài tập (Trang 01). + Đáp án và lời giải chi tiết (Trang 06). 2. Mức độ thông hiểu: 34 câu. + Câu hỏi và bài tập (Trang 18). + Đáp án và lời giải chi tiết (Trang 22). 3. Mức độ vận dụng thấp: 39 câu. + Câu hỏi và bài tập (Trang 37). + Đáp án và lời giải chi tiết (Trang 43). 4. Mức độ vận dụng cao: 29 câu. + Câu hỏi và bài tập (Trang 68). + Đáp án và lời giải chi tiết (Trang 74).
Chuyên đề khối đa diện và thể tích khối đa diện - Bùi Đình Thông
Tài liệu gồm 39 trang, được biên soạn bởi thầy giáo Bùi Đình Thông, tóm tắt lý thuyết, công thức và bài tập chuyên đề khối đa diện và thể tích khối đa diện (có đáp án), giúp học sinh học tốt chương trình Hình học 12 chương 1 và ôn thi Trung học Phổ thông Quốc gia môn Toán. Giới thiệu về chuyên đề khối đa diện và thể tích khối đa diện – Bùi Đình Thông: + Tóm tắt lý thuyết dễ tiếp cận. + Công thức tính nhanh các khối đa diện đặc biệt. + Bài tập được biên soạn kĩ cho học sinh dễ làm quen. + Hình vẽ minh họa chi tiết và hấp dẫn. + Dành cho đối tượng học sinh có học lực trung bình – khá.