Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPTQG 2018 trường PT thực hành Sư Phạm Đồng Nai

Đề thi thử Toán THPTQG 2018 trường PT thực hành Sư Phạm Đồng Nai mã đề 357 gồm 7 trang với 50 câu hỏi trắc nghiệm, thí sinh có 90 phút để làm bài, kỳ thi được tổ chức ngày 07/06/2018, đề thi có đáp án . Trích dẫn đề thi thử Toán THPTQG 2018 trường PT thực hành Sư Phạm Đồng Nai : + Một người gửi 200 triệu đồng vào một ngân hàng với lãi suất 0, 45% / tháng. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Hỏi sau đúng 6 tháng, người đó được lĩnh số tiền (cả vốn ban đầu và lãi) gần nhất với số nào dưới đây, nếu trong thời gian này người đó không rút tiền ra và lãi suất không thay đổi? [ads] + Một hình trụ có tâm các đáy là A,B. Biết rằng mặt cầu đường kính AB tiếp xúc với các mặt, đáy của hình trụ tại A,B và tiếp xúc với mặt xung quanh của hình trụ đó. Diện tích của mặt cầu này là 16π (tham khảo hình bên). Tính diện tích xung quanh của mặt trụ đã cho. + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của S lên mặt phẳng (ABC) trùng với trung điểm H của cạnh BC. Biết ∆SBC đều (tham khảo hình bên). Tính số đo góc giữa SA và (ABC).

Nguồn: toanmath.com

Đọc Sách

20 đề ôn thi tốt nghiệp THPT năm 2021 môn Toán mức độ cơ bản
Tài liệu gồm 79 trang, tuyển tập 20 đề ôn thi tốt nghiệp THPT năm 2021 môn Toán mức độ cơ bản (có đáp án), dành cho đối tượng học sinh có học lực trung bình – yếu. Trích dẫn tài liệu 20 đề ôn thi tốt nghiệp THPT năm 2021 môn Toán mức độ cơ bản: + Thể tích của khối hình hộp chữ nhật có các cạnh lần lượt là a, 2a, 3a bằng? A. a3. B. 6a3. C. 2a3. D. 3a3. + Số nghiệm của phương trình log (x − 1)2 = 2. A. 0. B. 2. C. 1. D. một số khác. + Số cách chọn 2 học sinh từ 7 học sinh là: A. C27. B. 72. C. 27. D. A27. + Cho hàm số f(x) liên tục trên R, bảng xét dấu của f0(x) như sau: xf0(x) − ∞ − 2 1 0 2 + ∞ − 0 + 0 − − 0 +. Hàm số có bao nhiêu điểm cực tiểu? A. 2. B. 4. C. 1. D. 3. + Nghiệm của phương trình 2 2x − 1 = 8 là? A. x = 52. B. x = 1. C. x = 32. D. x = 2.
Đề khảo sát chất lượng Toán 12 THPT năm 2021 sở GDĐT Hải Phòng
Nhằm hướng đến kỳ thi tốt nghiệp Trung học Phổ thông năm 2021, tối thứ Bảy ngày 29 tháng 05 năm 2021, sở Giáo dục và Đào tạo UBND thành phố Hải Phòng tổ chức kỳ thi khảo sát chất lượng học sinh khối 12 THPT môn Toán năm học 2020 – 2021; kỳ thi được diễn ra theo hình thức thi trực tuyến (thi online) để đảm bảo an toàn trước sự ảnh hưởng của dịch bệnh Covid-19. Đề khảo sát chất lượng Toán 12 THPT năm 2021 sở GD&ĐT Hải Phòng có cấu trúc bám sát đề minh họa tốt nghiệp THPT 2021 môn Toán của Bộ Giáo dục và Đào tạo, đề thi có đáp án (đáp án được gạch chân và đánh dấu màu đỏ). Trích dẫn đề khảo sát chất lượng Toán 12 THPT năm 2021 sở GD&ĐT Hải Phòng : + Ông An dự định làm một vườn hoa dạng elip được chia ra làm bốn phần bởi hai đường parabol có chung đỉnh, đối xứng với nhau qua trục của elip như hình vẽ dưới. Biết độ dài trục lớn, trục nhỏ của elip lần lượt là 16m và 8m, 1 2 F F là hai tiêu điểm của elip. Phần A, B dùng để trồng hoa, phần C, D dùng để trồng cỏ. Kinh phí để trồng mỗi mét vuông hoa và cỏ lần lượt là 200.000 đồng và 100.000 đồng. Tính tổng tiền để hoàn thành vườn hoa trên (làm tròn đến hàng nghìn). + Một bồn hình trụ đang chứa đầy nước, được đặt nằm ngang, chiều dài bồn là 4m, bán kính đáy 1,2m. Người ta rút nước trong bồn một lượng tương ứng như hình vẽ. Thể tích của lượng nước còn lại trong bồn xấp xỉ bằng? + Cho hình hộp ABCD A B C D có đáy ABCD là hình thoi cạnh a, BD a 3. Hình chiếu vuông góc của B trên mặt phẳng A B C D là giao điểm của A C và B D (tham khảo hình vẽ). Góc giữa hai mặt phẳng A B C D và ADD A bằng 0 60. Thể tích khối hộp ABCD A B C D bằng?
Đề ôn thi TN THPT 2021 môn Toán trường THPT Nguyễn Quán Nho - Thanh Hóa
Thứ Bảy ngày 29 tháng 05 năm 2021, trường THPT Nguyễn Quán Nho, huyện Thiệu Hóa, tỉnh Thanh Hóa tổ chức kỳ thi kiểm tra chất lượng ôn thi tốt nghiệp THPT môn Toán năm học 2020 – 2021. Đề ôn thi TN THPT 2021 môn Toán trường THPT Nguyễn Quán Nho – Thanh Hóa mã đề 301 gồm 07 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề ôn thi TN THPT 2021 môn Toán trường THPT Nguyễn Quán Nho – Thanh Hóa : + Mặt tiền nhà ông An có chiều ngang AB m 4, ông An muốn thiết kế lan can nhô ra có dạng là một phần của đường tròn C (hình vẽ). Vì phía trước vướng cây tại vị trí F nên để an toàn, ông An cho xây đường cong cách 1m tính từ trung điểm D của AB. Biết AF m 2, 0 DAF 60 và lan can cao 1m làm bằng inox với giá 2 2 triệu/m2. Tính số tiền ông An phải trả (làm tròn đến hàng ngàn). + Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D. Biết AB a 4, AD CD a 2. Cạnh bên SA a 3 và SA vuông góc với mặt phẳng đáy. Gọi G là trọng tâm tam giác SBC, M là điểm sao cho MA MS 2 và E là trung điểm cạnh CD (tham khảo hình vẽ). Tính thể tích V của khối đa diện MGABE. + Một lớp có 35 đoàn viên trong đó có 15 nam và 20 nữ. Chọn ngẫu nhiên 3 đoàn viên trong lớp để tham dự hội trại 26 tháng 3. Tính xác suất để trong 3 đoàn viên được chọn có cả nam và nữ?
Đề khảo sát chất lượng Toán 12 năm 2020 - 2021 sở GDĐT Sóc Trăng
Nhằm chuẩn bị cho kỳ thi tốt nghiệp THPT 2021 môn Toán, ngày 28 tháng 05 năm 2021, sở Giáo dục và Đào tạo tỉnh Sóc Trăng tổ chức kiểm tra khảo sát chất lượng môn Toán lớp 12 năm học 2020 – 2021. Đề khảo sát chất lượng Toán 12 năm 2020 – 2021 sở GD&ĐT Sóc Trăng gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 121, 122, 123, 124, 125, 126. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2020 – 2021 sở GD&ĐT Sóc Trăng : + Để chào mừng xã đạt chuẩn nông thôn mới, Ủy ban nhân dân xã X tiến hành ốp gạch trang trí hai bên bề mặt cổng chào vào xã. Cổng chào được thiết kế như hình bên với các đường viền cổng là dạng đường Parabol. Biết rằng tiền vật liệu cho một mét vuông bề mặt cổng bằng 1.000.000 đồng và tiền công thì cho một mét vuông là 200.000 đồng. Tổng kinh phí trang trí cổng chào bằng? + Trong không gian Oxyz, cho hình nón (N) có đỉnh S(3;-1;4) và tâm đường tròn đáy là I(9;2;-2). Hình trụ (T) có một đường tròn đáy tâm I, đường tròn đáy còn lại có tâm J và nằm trên mặt xung quanh của hình nón (N). Khi (T) có thể tích lớn nhất thì mặt phẳng chứa đường tròn tâm J có phương trình dạng 2x + bx + cz + d = 0. Tính P = abc. + Trong không gian Oxyz, cho điểm K(3;-2;1) và mặt cầu (S): x2 + y2 + z2 – 2x + 6z – 6 = 0. Viết phương trình đường thẳng delta đi qua K và cắt mặt cầu (S) tại hai điểm M, N sao cho độ dài đoạn thẳng MN lớn nhất.