Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi môn Toán lớp 9 có đáp án chi tiết - Phần 53

Nguồn: onluyen.vn

Xem

Đề thi HSG Toán 9 cấp quận năm 2019 - 2020 phòng GDĐT Ba Đình - Hà Nội
Thứ Năm ngày 07 tháng 11 năm 2019, phòng Giáo dục và Đào tạo quận Ba Đình, thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi lớp 9 cấp quận môn Toán năm học 2019 – 2020. Đề thi HSG Toán 9 cấp quận năm 2019 – 2020 phòng GD&ĐT Ba Đình – Hà Nội gồm có 5 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có 1 trang. Trích dẫn đề thi HSG Toán 9 cấp quận năm 2019 – 2020 phòng GD&ĐT Ba Đình – Hà Nội : + Cho nửa đường tròn (O) đường kính AB, dây CD (C thuộc cung AD), gọi M là chân đường vuông góc kẻ từ A đến CD, trên tia đối của tia DC lấy điểm N sao cho CM = DN. a) Chứng minh BN vuông góc với CD. b) Gọi I là giao điểm của AD và BC. Chứng minh: S_AIB = S_AMC + S_CID + S_DNB. [ads] + Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. a) Cho biết AH = 12 cm và BC = 25 cm. Tính tổng AB + AC. b) Đường thẳng đi qua trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M và N. Chứng minh rằng: 1/AM^2 + 1/AN^2 = 9/BC^2. + Cho A là một tập hợp gồm ba số tự nhiên có tính chất: tổng hai phần tử tùy ý của A là một số chính phương. Chứng minh rằng: trong tập hợp A có không quá một số lẻ. + Cho a, b là các số thực dương thỏa mãn a + 1/b ≤ 1. Tìm giá trị lớn nhất của biểu thức T = ab/(a^2 + b^2). + Tìm số tự nhiên a biết a + 20 và a – 69 đều là số chính phương.
Đề thi HSG huyện Toán 9 năm 2019 - 2020 phòng GDĐT Tân Kỳ - Nghệ An
Ngày … tháng 11 năm 2019, phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2019 – 2020, nhằm biểu dương những em có năng lực học tập Toán 9 xuất sắc, đồng thời thành lập đội tuyển học sinh giỏi Toán 9 huyện Tân Kỳ, Nghệ An, tham dự kỳ thi học sinh giỏi Toán 9 cấp tỉnh. Đề thi HSG huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Tân Kỳ – Nghệ An gồm có 01 trang, đề được biên soạn theo dạng đề tự luận với 05 bài toán, thời gian làm bài 150 phút (không kể khoảng thời gian giám thị coi thi phát đề). Trích dẫn đề thi HSG huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Tân Kỳ – Nghệ An : + Cho tam giác ABC vuông tại A, đường cao AH, đường trung tuyến AM. Gọi D, E lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: DE^2 = BH.HC b) Chứng minh DE vuông góc với AM. c) Giả sử diện tích tam giác ABC bằng hai lần diện tích tứ giác AEHD. Chứng minh tam giác ABC vuông cân. 2. Tính độ dài đường phân giác AD của tam giác ABC. Biết tam giác ABC có AB = 3cm, AC = 6cm, góc BAC = 120 độ. [ads] + Cho m^2 + 4 và m^2 + 16 là các số nguyên tố với m là số nguyên dương lớn hơn 1. Chứng minh rằng m chia hết cho 5. + Một sân hình vuông được chia 25 ô vuông nhỏ, mỗi ô được chia một học sinh đứng. Trống đánh, mỗi học sinh đều bước sang ô có cạnh chung với ô mình đang đứng. Chứng minh rằng khi đó phải có ít nhất một ô trống.
Đề thi HSG huyện Toán 9 năm 2019 - 2020 phòng GDĐT Yên Thành - Nghệ An
Ngày … tháng 11 năm 2019, phòng Giáo dục và Đào tạo huyện Yên Thành, tỉnh Nghệ An tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 9 cấp huyện năm học 2019 – 2020. Đề thi HSG huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Yên Thành – Nghệ An gồm có 05 bài toán, thời gian làm bài 150 phút, đề thi gồm 01 trang. Trích dẫn đề thi HSG huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Yên Thành – Nghệ An : + Trong mặt phẳng cho 6 điểm A1, A2, A3, A4, A5, A6 trong đó không có ba điểm nào thẳng hàng. Với ba điểm bất kỳ trong sáu điểm này luôn tìm được hai điểm mà khoảng cách giữa chúng nhỏ hơn 673. Chứng minh rằng trong sáu điểm đã cho luôn tìm được ba điểm là ba đỉnh một tam giác có chu vi nhỏ hơn 2019. [ads] + Cho tam giác nhọn ABC (AB < AC), ba đường cao AD, BE, CF cắt nhau tại H. Gọi I là giao điểm EF và AH. Đường thẳng qua I và song song với BC cắt AB, BE lần lượt tại P và Q. a) Chứng minh tam giác AEF đồng dạng tam giác ABC. b) Chứng minh IP = IQ. c) Gọi M là trung điểm của AH chứng minh I là trực tâm của tam giác BMC. + Cho a, b, c thỏa mãn 2a + b + c = 0. Chứng minh rằng: 2a^3 + b^3 + c^3 = 3a(a + b)(c – b).
Đề thi học sinh giỏi huyện Toán 9 năm 2019 - 2020 phòng GDĐT Nghi Lộc - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi học sinh giỏi huyện Toán 9 năm học 2019 – 2020 phòng GD&ĐT Nghi Lộc – Nghệ An, đề thi được biên soạn theo dạng tự luận với 05 bài toán, thời gian làm bài 150 phút, kỳ thi nhằm tuyển chọn các em học sinh lớp 9 có khả năng học tập môn Toán xuất sắc trên địa bàn huyện Nghi Lộc, tỉnh Nghệ An. Trích dẫn đề thi học sinh giỏi huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Nghi Lộc – Nghệ An : + Cho hình vuông ABCD có cạnh là a. Gọi O là giao điểm của hai đường chéo AC và BD. Lấy điểm E thuộc BC sao cho BE = 1/2EC. Gọi M là giao điểm của hai đường thẳng AE và CD. Trên tia đối của tia DC lấy điểm I sao cho DI = BE. a) Chứng minh: AO.AC = a2 và 1/AI^2 + 1/AM^2 = 1/a^2. b) Trên tia đối của tia CB lấy điểm N sao cho CN = CM. Chứng minh tam giác BOE đồng dạng với tam giác BND. c) Lấy điểm F thuộc tia đối của tia CD sao cho CF = a/2, gọi H là giao điểm của AM và BF. Chứng minh CH vuông góc với AM. [ads] + Cho biểu thức P. a) Nêu điều kiện xác định và rút gọn P. b) Tìm a để P + |P| = 0. c) Tìm a thuộc Z để P thuộc Z. + Tìm các số tự nhiên x sao cho 17 + x^2 là một số chính phương.