Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 9 năm 2023 - 2024 trường THCS Quang Trung - Bình Định

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp trường môn Toán 9 năm học 2023 – 2024 trường THCS Quang Trung, thành phố Quy Nhơn, tỉnh Bình Định; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 trường THCS Quang Trung – Bình Định : + Trên bảng ban đầu ghi số 2 và số 4. Ta thực hiện cách viết thêm các số lên bảng như sau: nếu trên bảng đã có hai số, giả sử là a b a b ta viết thêm lên bảng số có giá trị là a b ab. Hỏi với cách thực hiện như vậy, trên bảng có thể xuất hiện số 123456 được hay không? Giải thích. + Cho tam giác ABC, biết rằng 3 A 2 B 1800. Chứng minh: AB2 = BC2 + AB.AC. + Cho tam giác đều ABC có cạnh bằng a. Hai điểm M, N lần lượt di động trên hai đoạn thẳng AB AC AB AC sao cho AM AN 1. Chứng minh MN = a – x – y.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG lớp 9 môn Toán vòng 1 năm 2023 2024 trường THPT chuyên Hà Nội Amsterdam
Nội dung Đề thi HSG lớp 9 môn Toán vòng 1 năm 2023 2024 trường THPT chuyên Hà Nội Amsterdam Bản PDF - Nội dung bài viết Đề thi HSG lớp 9 môn Toán vòng 1 năm 2023-2024 trường THPT chuyên Hà Nội Amsterdam Đề thi HSG lớp 9 môn Toán vòng 1 năm 2023-2024 trường THPT chuyên Hà Nội Amsterdam Sytu xin chào quý thầy cô giáo và các em học sinh lớp 9. Đây là đề thi chọn đội tuyển học sinh giỏi môn Toán lớp 9 vòng 1 năm học 2023-2024 của trường THPT chuyên Hà Nội Amsterdam. Đề thi sẽ diễn ra vào thứ Năm ngày 14 tháng 9 năm 2023. Đề thi HSG Toán lớp 9 vòng 1 năm 2023-2024 của trường THPT chuyên Hà Nội Amsterdam đưa ra các câu hỏi thú vị và phong phú. Ví dụ như: 1. Cho các số nguyên dương a, b, c, d thỏa mãn a + b + c + d = 2024, bạn hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = ab + bc + cd. 2. Trong tam giác ABC vuông tại A (AB < AC), đường thẳng PF song song với đường thẳng CM. Chứng minh rằng tam giác GEF cân và đường thẳng AG vuông góc với đường thẳng EF. 3. Xác định tất cả các tập con tốt của tập hợp các số nguyên dương theo yêu cầu đã đề ra. Đây là một cơ hội tuyệt vời để các em học sinh thể hiện khả năng và kiến thức Toán của mình. Mong rằng đề thi sẽ giúp các em rèn luyện và phát triển kỹ năng giải bài toán hiệu quả. Chúc các em thành công và tự tin thể hiện tài năng của mình!
Đề thi chọn học sinh giỏi Toán THCS năm 2022 2023 sở GD ĐT Vĩnh Long
Nội dung Đề thi chọn học sinh giỏi Toán THCS năm 2022 2023 sở GD ĐT Vĩnh Long Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi Toán THCS năm 2022 - 2023 sở GD&ĐT Vĩnh Long Đề thi chọn học sinh giỏi Toán THCS năm 2022 - 2023 sở GD&ĐT Vĩnh Long Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi chọn học sinh giỏi Toán cấp tỉnh lớp 9 THCS năm học 2022 - 2023 do Sở Giáo dục và Đào tạo tỉnh Vĩnh Long tổ chức. Kỳ thi sẽ diễn ra vào ngày 19 tháng 03 năm 2023. Đề thi sẽ bao gồm các câu hỏi đa dạng, có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Một số câu hỏi mẫu trong đề thi bao gồm: + Cho đường tròn có đường kính AB và điểm C là điểm bất kỳ trên đường tròn. Tiếp tuyến tại C cắt tiếp tuyến tại A và B lần lượt tại P và Q. Nhiệm vụ của em là chứng minh một số tính chất của tam giác POQ và APBQ. + Đề thi cũng sẽ đưa ra các bài toán về hình vuông và phương trình. Ví dụ: một bài toán đưa ra hình vuông ABCD có độ dài đường chéo bằng 1 và yêu cầu chứng minh chu vi tứ giác MNPQ không nhỏ hơn 2. Đây là những ví dụ cụ thể chỉ ra sự đa dạng và thú vị của đề thi. Hy vọng rằng đề thi sẽ giúp các em học sinh rèn luyện và phát triển kỹ năng Toán của mình.
Đề thi HSG lớp 9 môn Toán cấp quận năm 2022 2023 phòng GD ĐT Hải An Hải Phòng
Nội dung Đề thi HSG lớp 9 môn Toán cấp quận năm 2022 2023 phòng GD ĐT Hải An Hải Phòng Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 9 cấp quận năm 2022 - 2023 Hải An, Hải Phòng Đề thi HSG Toán lớp 9 cấp quận năm 2022 - 2023 Hải An, Hải Phòng Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 cấp quận năm học 2022 - 2023 của phòng Giáo dục và Đào tạo UBND quận Hải An, thành phố Hải Phòng. Đề thi này bao gồm đáp án, hướng dẫn giải chi tiết và thang chấm điểm. Đề thi gồm nhiều câu hỏi khó và phức tạp như: Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O). Qua A lần lượt kẻ các tiếp tuyến AB, AC đến đường tròn (O) (B, C là các tiếp điểm. Lấy điểm D thuộc đường tròn (O) sao cho BD // AO. Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai E. Gọi M là trung điểm của AC. a) Chứng minh rằng ME là tiếp tuyến của đường tròn (O) b) Gọi T là giao điểm của các đường thẳng ME, BC, I là giao điểm của các đường thẳng DE, BC. Chứng minh OI AT c) Qua E kẻ đường thẳng song song với đường thẳng AB cắt các đường thẳng BC, BD lần lượt tại các điểm P và Q. Chứng minh rằng: PQ = PE Trên bảng ta viết 3 số 1 2 2 2. Mỗi bước ta chọn 2 số a b bất kỳ trên bảng, xóa chúng đi và thay bởi 2 số 2 2 a ba b và giữ nguyên số còn lại. Hỏi sau một số hữu hạn bước, ta có thể thu được 3 số 1 2 1 2 2 2 trên bảng được không? Cho các số nguyên dương abc thỏa mãn 222 abc. Chứng minh rằng ab chia hết cho: abc. Đề thi này đòi hỏi sự kiên nhẫn, quan sát kỹ lưỡng và kỹ năng giải quyết vấn đề linh hoạt của các thí sinh. Chúc các em học sinh lớp 9 đạt kết quả cao trong kỳ thi HSG môn Toán cấp quận năm học 2022 - 2023 này!
Đề thi chọn học sinh giỏi lớp 9 môn Toán năm 2022 2023 sở GD ĐT Quảng Trị
Nội dung Đề thi chọn học sinh giỏi lớp 9 môn Toán năm 2022 2023 sở GD ĐT Quảng Trị Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi Toán lớp 9 năm 2022 – 2023 sở GD&ĐT Quảng Trị Đề thi chọn học sinh giỏi Toán lớp 9 năm 2022 – 2023 sở GD&ĐT Quảng Trị Chào quý thầy, cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán lớp 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Trị. Kỳ thi sẽ diễn ra vào thứ Tư ngày 15 tháng 03 năm 2023. Trích dẫn Đề thi chọn học sinh giỏi Toán lớp 9 năm 2022 – 2023 sở GD&ĐT Quảng Trị: 1. Cho a, b, c là các số nguyên đôi một khác nhau. Chứng minh rằng trong ba phương trình sau, có ít nhất một phương trình có nghiệm: x² – 2ax + bc + 1 = 0, x² – 2bx + ca + 1 = 0, x² – 2cx + ab + 1 = 0. 2. Cho các số nguyên x, y thỏa mãn 2×2 − y2 = 1. Chứng minh xy(x2 − y2) chia hết cho 40. 3. Một giải cầu lông có n (n ≥ 2) vận động viên tham gia thi đấu theo thể thức vòng tròn một lượt (hai vận động viên bất kỳ thi đấu với nhau đúng một trận, không có kết quả hòa). Chứng minh rằng tổng các bình phương số trận thắng và tổng các bình phương số trận thua của các vận động viên là bằng nhau. 4. Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), AD là đường cao (D thuộc BC). Gọi E, F lần lượt là hình chiếu của D trên AC và AB. a) Chứng minh tứ giác BCEF nội tiếp. b) Đường tròn đường kính AD cắt (O) tại điểm thứ hai là M (M khác A). Chứng minh MD là phân giác của góc FMC. c) Chứng minh đường thẳng MD, đường trung trực của BC và đường trung trực của EF đồng quy.